

Speed-up Scheme of Turnouts in Throat Area of Existing Line Railway Station

Yichi LIU

Shenhua quasi-energy Grand Quasi Railway Co., Ltd. Ordos, Inner Mongolia, 010300

Abstract

The turnouts of existing line railway station are often limited by many factors and run at speed limit. Based on the specific situation of 5-11# turnout at the point of the grand quasi-railway, this paper summarizes the speed-up scheme of the turnouts in the throat area, and provides a reference for the speed increase of the turnouts in the narrow areas of similar railway stations in the future

Key Words

Existing Lines, Throat Area, Turnout Speed

DOI:10.18686/xdjt.v1i2.430

既有线铁路车站咽喉区道岔提速方案

路宜驰

神华准能大准铁路公司,内蒙古鄂尔多斯,010300

摘要

既有线铁路站场道岔往往受多种因素限制,限速运行。本文依据大准铁路点岱沟车站 5-11#道岔具体情况,总结处于咽喉区域的道岔的提速方案,对今后类似铁路站场狭窄地段道岔提速提供参考。

关键词

既有线; 咽喉区; 道岔; 提速

1. 引言

大准铁路是国家 I 级单线重载电气化铁路,东起山西省大同市,西至内蒙古鄂尔多斯市准格尔旗薛家湾镇,正线全长 302.4 公里,途径两省六旗县(市),是已形成的"西煤东运"大通道——大秦线的向西延伸。点岱沟车站是大准铁路的万吨级车站之一,于 1997 年建成,2005 年进行了万吨级改造,2013 年与巴准线接轨,再次进行了站场改造。至此,点岱沟站到龙王渠方向的万吨级列车正式开通。

2. 背景介绍

点岱沟站内共有 16 股道,其中 6、7、8、9、10 道为万吨车始发线,途径 85#、87#、89#、91#、105#、63#、33-39#、41#、5-11#、3#道岔进入点支上行正线。由于 5-11#道岔限速 30km/h,致使最外方 3#道岔同样限速 30km/h,发往龙王渠方向的万吨级列车受低速缓解

限制,出站后须在区间停车缓解,重新启动。据统计,因停车原因每列万吨较正常运行(道岔限速 45km/h)时延时 5 分钟,日累计 35 分钟,平均影响 2.2 对/日。因此,对 5-11#道岔进行提高改造是当务之急。

3. 原因分析

2013年站改时,为了实现点支上行线、牵出线、调车线、到发线的互通,设计中采用了复式交分进行联结。由于该地方空间比较狭窄,在 3#道岔与 5-11#道岔之间设计了半径为 450m,长度为 12.38m 的曲线(QJD5)。其中 3#道岔岔后夹直线长度 21.61m,曲线QJD5的圆直点与5-11#道岔乙股前端直线长度为9.35m,曲线QJD5与QJD4间夹直线为52.01m(详见图1)。根据《铁路线路修理规则》规定:"站线道岔与曲线之间,均应有直线段过渡,其长度不应小于7.5m。"由此可见理论设计符合相关规程规定。

施工时发现,3#道岔设计坐标与现场实际不符,造成5-11#道岔不能按照设计坐标铺设到位,为开通线路,

施工单位改变了 5-11#道岔坐标位置和曲线 QJD4、QJD5 曲线半径,使线路基本顺接后开通,限速 30km/h。

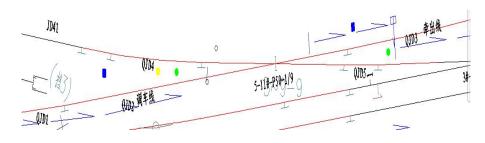


图 1 复式交分联接的设计

4. 设计方案

本次改造需遵循以下两个原则: 1.实现 5-11#道岔 提速至 45km/h; 2.不影响既有线铁路运输。为实现上述 目标,本文提出了两个方案进行比选:

方案一:将 3#道岔右开改为左开,以 5-11#道岔岔 心为中心前段下压 360mm,后端上挑 360mm,原岔心保持不变。

方案二:以 5-11#道岔岔心为圆心,甲股辙叉跟端为短边,逆时针旋转 0.225°,改变道岔前后曲线要素。

根据现场实际情况,如果将 3#道岔右开变为左开,会导致点支上行线侧向通过 3#道岔,意味着点支上行线通过本组道岔时限速 50km/h,由此可见方案一不可行。

方案二对既有线设备影响较小,且不影响行车,故 确定以方案二作为改造方案。

首先,利用 CPIII 对该段线路中心坐标进行测量,对采集数据分析。然后,根据设计方案,以 5-11#道岔 岔心为圆心,甲股辙叉跟端为短边,逆时针旋转 0.225°,即 5-11#道岔甲股、乙股后端上挑 61mm、前端下压 61mm,可完成对 5-11#道岔的旋转。最后,为满足曲线 QJD5 夹直线段的要求,对 5-11#道岔前后曲线要素进行重新设计,形成了以拨道量最小的优化方案。

5. 施工计划及准备工作

5.1 施工计划

2016年10月17日至18日,共2天。

5.2 施工前准备工作

(1) 施工前需调查施工地段影响捣固作业车拨道

施工的障碍物,及时拆除和恢复。

- (2) 拨道前,将 5-11#道岔螺栓全部紧固,使其形成整体,岔枕间道砟全部掏空,装入尼龙袋后放入枕盒内,将线路拨道方向一侧石砟扒至轨枕底面,并装入尼龙袋放到砟肩,以减小道床阻力。
- (3) 根据拨道量,施工前应在大拨道量地段备足道砟。
- (4) 现场每 5m 设一处控制点,在各个点处设置 拨道桩,测量各点的原始数据;根据设计提供拨道量, 在轨枕上表明拨道方向及拨道量,提前向捣固作业车施 工负责人做好技术交底工作。
- (5)施工现场设施工负责人1名,负责拨道指挥及协调工作;技术人员2名,负责计算拨道量是否满足设计要求;测量人员6名(检查工区负责),随时对拨道量进行测量;防护员3名;现场作业人员30名,负责补充道砟及其他作业;拨道人员6名,负责配合捣固作业车拨道并进行拨道后的线路微调工作。所需起拨道器、钢叉,扒镐,撬棍,直捣器、锯轨机、钻孔机数量由施工负责人提前准备好。
- (6) 拨道时需供电段、信号段进行配合,供电段、信号段需派专人提前到现场调查工作内容及工作量。

(7) 施工防护

施工当日工区在车站做好登、销记,现场施工地段两端按规定设好防护。

6. 施工方案

6.1 捣固作业车配备

本次拨道采用捣固作业车(道岔捣固车、08-32线 路捣固车各一台)进行拨道作业,捣固作业车照设计数

据进行作业。

6.2 实施计划及步骤

根据现场实际情况,本次施工分为两个天窗日进行。

(1) 第一天窗日:

①以 5-11#道岔甲股重车线方向为作业面,捣固作业车从 3#道岔侧向直线段开始起拨,按照各点给定拨量进行拨道,经过曲线 QJD5、5-11#道岔甲股、曲线 QJD4、JD41,至 41#道岔岔后完成拨道。

②捣固作业车第一遍拨道开始后,测量人员紧跟捣固作业车后测量拨道量大小,对未拨到位的处所将拨道量重行标注在轨枕上(表明方向,数值。)

③捣固作业车拨道后,现场作业人员对缺砟地段进行补充,并适当夯实。

④完成第一遍拨道作业后,捣固作业车回到 3#道 岔岔后,按照新标定的拨道量准备第二遍拨道,本次拨 道主要是对未拨到位的处所进行微调、精拨。

⑤完成第二遍拨道作业后,测量人员再次测量拨道量大小,对未达到设计要求还需进行第三、第四遍拨道,直至达到设计要求。

⑥第一日拨道完成后,供电人员进行调网作业,信 号人员安装连接线和调试道岔。

⑦作业完毕后,现场施工负责人认真检查线路设备 状态,确认达到放行列车条件,撤除防护,开通5-11# 道岔甲股方向放行列车,直向第一列25km/h,第二列 45km/h,同时封锁5-11#道岔甲股侧向、乙股直向、侧 向线路。

(2) 第二天窗日:

①以 5-11#道岔乙股牵出线方向为作业面,捣固作业车从 1#道岔岔后直线段开始起拨,按照各点给定拨量进行拨道,经过曲线 QJD3、5-11#道岔乙股、曲线 QJD2、QJD1,至 51#道岔岔后完成拨道。

②本日拨道按照设计拨道量进行拨道,作业程序与第一日相同,在捣固作业车两遍拨道完成后,施工负责人确认是否具备开通条件,具备条件后,开通 5-11#道 盆乙股方向放行列车,直向第一列 25km/h,第二列 45km/h,同时开通 5-11#道岔甲股侧向、乙股侧向线路。

③全部施工完成后,5-11#道岔甲股、乙股直向及

其前后线路连接曲线限速 45km/h, 5-11#道岔甲股、乙股侧向限速 30km/h。

7. 安全保障措施

1.开工前,施工负责人必须指定各作业小组负责人和各部位防护人员,确认设备状态良好、人员、材料、防护信号及配合单位全部到位后方可发布正式施工命令。

2.接到施工负责人的通知后,驻站联络员应按规定 办理登记手续,接到调度封锁施工命令后应及时向施工 负责人传达。

3.接到调度封锁施工命令后施工负责人应及时通 知现场全体防护人员按规定设置防护。

4.防护设置完毕后,施工负责人方可通知作业人员 上道作业。

5.施工过程中,全体作业人员应听从指挥、统一行动,严禁串岗、脱岗、闲聊;驻站联络员与现场防护员、施工负责人应保持联系。

6.来车时、过车时全体人员应做好下道避车工作。 人员下道避车的同时,必须将作业机具、材料移出线路, 并放置、堆码牢固,不得侵入建筑限界。

7.各小组负责人应加强检查,发现问题、不安全隐 患及时通知现场负责人进行处理,严禁冒险蛮干。现场 负责人应与配合单位做好沟通、协调工作。

8.作业完毕,现场负责人应安排专人对线路、道岔的轨道几何尺寸、道床密实和饱满程度、线间距、线路中心与接触网支柱间的距离进行全面检查,确认均符合相关要求、慢行信号已设好后方可通知驻站联络员办理销记手续,开通线路。

8. 总结

经过对点岱沟站 5-11#复式交分道岔提速后,点岱沟站发出的万吨列车在区间停车的问题得到了解决,比整改前每列节约 2 分钟,日开 5 列节约 10 分钟,同时增开巴准线列车 0.6 对/日,增加了点岱沟车站的发货和通过能力。

参考文献

[1]李俊成.大准铁路点岱沟站东岔区提速改造实施[J]. 科学论坛,2017(07): 123-125.