钢轨打磨技术在现代轨道工程中的应用

马圣坤

合肥市轨道交通集团运营有限公司 安徽合肥 230000

摘 要:钢轨打磨技术在现代轨道工程中扮演着不可或缺的角色,通过提升轨道表面质量、优化列车运行条件和减少运营成本,为城市轨道交通和高铁运输的安全、高效和可持续发展提供了重要支持。本文聚焦于钢轨打磨技术在现代轨道工程中的应用,探讨了其在维护轨道完整性和确保行车安全方面的重要性。本文分析了钢轨作为轨道工程核心组成部分的材料特性和磨损机理,进而详细探讨了钢轨打磨技术的基本原理和实施方法,以供参考。

关键词:钢轨打磨技术;轨道工程;磨损机理;行车安全;维护成本

1 钢轨打磨技术的理论基础

钢轨打磨技术的理论基础主要涉及轨道几何形状、 表面质量要求、磨损机制和磨削原理等方面。轨道的几 何形状对于列车的安全和舒适度至关重要。典型的几何 参数包括: 轨道几何参数如轨道轮廓、轨道超高、轨 道曲线半径、轨道磨耗量等。这些参数直接影响列车在 轨道上的稳定性、噪声和振动水平。轨道偏差包括轨道 的高低交错、曲线处的超高、超高变化率等。偏差的存 在会增加列车在运行中的动态载荷和摩擦阻力,影响运 行安全和能效。轨道表面的质量直接影响列车的运行和 使用寿命。轨道表面应平整,避免凹凸不平和表面磨损 导致的噪音和振动。轨道表面应具备一定的硬度,以防 止轨道磨损过快。光洁度高则有利于降低列车与轨道之 间的摩擦阻力。轨道的磨损主要包括磨耗、疲劳裂纹和 塑性变形等, 轨道在长期使用过程中会因为列车的摩擦 和冲击产生表面磨损,特别是在曲线和高频度使用区域 更为显著。轨道在受到周期性应力影响下,会出现疲劳 裂纹,影响其结构强度和使用寿命,轨道在重载条件下 可能出现塑性变形,导致轨道的几何形状发生改变。钢 轨打磨的基本原理包括机械磨削和磨料磨削两种主要方 式,通过旋转的砂轮或研磨头,利用机械力在轨道表面 进行切削和磨削,以改善轨道表面质量和几何形状。利 用磨料颗粒在轨道表面施加压力和磨削作用,通过磨料 的高速旋转和轨道表面的相互作用,去除不良表面材 料,以获得平整的表面。打磨过程中涉及的技术参数包 括砂轮转速、进给速度、磨削压力、磨削液的使用等, 这些参数的合理选择和控制直接影响打磨效果和轨道的 最终质量。

2 现代轨道工程中钢轨打磨技术的应用 2.1维护和保养

钢轨打磨是轨道维护和保养的重要手段之一。定期 的钢轨打磨能够有效地保持轨道表面的平整度和几何形 状。轨道表面如果不平整或者存在凹凸不平,会导致列 车在运行过程中产生噪音和振动,影响乘客的乘车舒适 度, 甚至影响列车的运行安全。通过打磨, 可以去除轨 道表面的凹陷和突起, 保持轨道的整体平滑和几何精度。 轨道长期运行后会出现磨损和各种缺陷, 如裂纹、磨损 严重的轨道节段等。这些问题如果不及时处理,会加速 轨道的退化和损坏,进而影响列车的安全和运行稳定性。 通过定期的打磨检查,可以及时发现这些问题并进行修 复,延长轨道的使用寿命,减少因轨道问题引起的维修 成本和运营中断。不平整的轨道表面是导致列车运行时 噪音和振动的主要原因之一。通过钢轨打磨,可以减少 轨道表面的不规则性,降低列车在运行时与轨道之间的 摩擦力和振动,提升乘客的乘车舒适度,同时减少对周 围环境的噪声影响。钢轨打磨作为轨道维护的一部分, 能够帮助铁路运营者优化维护成本和效率。通过定期打 磨,可以预防轨道的严重磨损和损坏,避免大规模的修 复工作和停运,从而降低维护的总体成本,并确保轨道设 施的长期可持续运营。维护良好的轨道表面直接关系到列 车的运行安全性和可靠性。平整的轨道能够减少列车在运 行过程中可能遇到的意外情况,保障乘客和工作人员的安 全,同时减少由于轨道问题引起的运营中断和事故风险。

2.2提升列车运行效率和安全性

钢轨打磨有助于提升列车的运行效率和安全性。平 整的轨道表面减少了列车的摩擦阻力和能耗,优化了列

车的动力学性能和运行稳定性。此外,通过消除轨道表面的缺陷和凹凸不平,减少了列车在运行过程中可能遇到的冲击和振动,提升了乘客的乘车舒适度。

2.3 优化轨道几何参数

钢轨打磨可以调整和优化轨道的几何参数,如轨道 轮廓、超高和曲线半径等。这些参数的优化可以提高轨 道的整体结构性能,减少动车组和列车在运行时的运动 阻力,从而降低能耗和提高列车的经济性。

2.4 应对高速运行要求

随着轨道交通技术的进步和高速列车的普及,对轨道表面质量和几何精度的要求越来越高。钢轨打磨技术可以有效应对高速运行要求,确保轨道表面平整度和垂直度,减少高速列车在运行过程中可能产生的噪音和振动,保证运行安全和乘车舒适度。通过定期的钢轨打磨,可以延长轨道的使用寿命,减少因轨道老化和磨损导致的维修和更换成本。这对于城市轨道交通系统和高铁运营来说,具有重要的经济意义和社会效益,能够降低运营成本,提高设施的整体投资回报率。

2.5数据驱动的打磨管理

现代轨道工程中,钢轨打磨越来越多地采用数据驱动的管理方法。通过轨道检测车和激光测量系统收集的大量数据,可以实现对打磨效果的实时监测和评估,优化打磨策略和周期,提高打磨的效率和成本效益,确保打磨质量符合技术标准和运营要求。

结语

随着人工智能和自动化技术的进步,未来钢轨打磨将更加智能化。智能化打磨设备和系统可以根据实时数据自动调整打磨参数,提高效率和精度,减少人为误差。新型轨道材料和涂层技术的出现,能够提高钢轨的耐磨性和抗腐蚀性,延长轨道使用寿命,并减少打磨的频率和成本。进一步发展和应用高精度的轨道测量技术,如激光测量、无损检测等,能够精确评估轨道的磨损和几何形状,为打磨提供更精准的数据支持。打磨过程中的环境影响逐渐引起关注,未来发展趋势包括采用更环保的磨料和润滑剂,减少粉尘和噪音污染,保护周围环境和乘客健康。轨道交通网络的扩展和复杂化,未来的发展趋势是建立综合的轨道维护管理系统,集成打磨、检测、维修和预测性维护,实现全面的轨道资产管理和优化运营。

参考文献

- [1] 杨凯健. 钢轨打磨技术在地铁线路维护工作中的应用[]]. 科学大众(科技创新), 2019, (04): 92-92.
- [2] 王士杰. 铁路线路施工中钢轨打磨技术探讨[J]. 科技创新与应用, 2015, 5(30): 223-223.
- [3]张伟伟. 钢轨打磨车在地铁线路维护工作中的应用[J]. 中国科技期刊数据库工业A, 2020, (08): 00049-00050.