

沸石转轮吸附浓缩+催化燃烧(CO)技术 在喷漆机库废气处理的应用

曾思聪

四川航空股份有限公司 四川成都 610000

摘 要:在航空行业,飞机维修尤其在机身喷漆维护作业时会产生大量有机废气,废气的处理一直是技术和环保的老大难问题。在粗放管理时代,废气直接高空排放而未做任何处理,不仅影响工作人员健康,更严重污染环境。如今,在国家"双90"环保政策的要求下,社会大力重视环保,有机废气处理技术不断更新和发展,沸石转轮吸附浓缩+催化燃烧(CO)技术就是其中一项快速发展成熟的新技术,本文实例作为其中杰出的应用代表之一,同时也是飞机维修行业国内仅有的几个应用案例之一,对沸石转轮吸附浓缩+催化燃烧(CO)技术处理有机废气具有较高的研究价值和借鉴意义。

关键词:飞机维修;沸石转轮吸附浓缩;催化燃烧(C0)技术;喷漆机库;废气处理

1 沸石转轮原理简介

沸石转轮吸附浓缩+催化燃烧(CO)工艺适用于大风量、低浓度的有机废气治理,应用范围广,可用于各种喷漆车间(汽车制造、造船、飞机制造、钢铁制品、树脂制品等待)的排气处理、各种印刷车间(凹版印刷、建筑装潢材料印刷、其他各种印刷过程)的排气处理等。原理是:利用沸石比表面积大、不同温度条件下分子间作用力不同的原理进行设计。低温条件下,大风量的有机废气通过沸石转轮,VOCs分子吸附在沸石表面,经过沸石转轮的废气被净化为达标气体,可直接排放。同时,吸附有大量VOCs的沸石转轮部分进入高温脱附区,利用小风量的高温气体将沸石上的VOCs分子脱附出来,形成高浓度废气,进入催化燃烧(CO)内低温(相较于RTO、TO等工艺)氧化处理,净化后的气体直接排放。

2 沸石转轮特性及CO系统

2.1沸石转轮特性

(1)高性能、高效率。使用吸附性极好的疏水性分子筛或活性炭作为吸附剂,可吸附各种VOCs,对各种工况均有较强的适应性。(2)高沸点溶剂的处理。使用疏水性分子筛时,利用不燃性、高耐热型的特点可以在高温条件下再生。因此,对于使用活性炭时因为再生温度限值而无法处理的高沸点VOCs,也能够处理。(3)清洗和活化。浓缩装置中的核心部件—浓缩转轮是在高温下烧结处理而成的,完全是无机物的结合体。如果发生蜂窝通路堵塞时,可以进行水洗、压送空气吹扫等;另外,分

子筛转轮也可以根据实际情况通过热处理进行高温活化。

2.2 CO系统

(1)燃烧原理。催化燃烧治理方法是将挥发性有机 气体源通过引风机作用送入净化装置,首先通过除尘阻 火器系统,然后进入换热器,再送入到加热室,通过加 热装置,使气体达到燃烧反应温度,再通过催化床的作 用,使有机气体分解成二氧化碳和水,再进入换热器与 低温气体进行热交换,使进入的气体温度升高达到反应 温度。如达不到反应温度,这样加热系统就可以通过自 控系统实现补偿加热,使它完全燃烧,这样节省了能源, 废气净化率高。反应过程为:

$$C_nH_m + (n+m/4)O_2 \xrightarrow{\text{催化剂}} nCO_2 \uparrow + \frac{m}{2}H_2O \uparrow + 热量$$

为了最大节约能量,转轮脱附出来的高浓度废气被送入二级高效换热器,与和从一级换热器排出的烟气发生热交换,温度升高到300℃(催化床进口温度),进入催化氧化床。废气流经催化剂固定床层时,在催化剂作用下和废气中的02发生催化氧化,最终产物变成无害的CO2+H2O,并放出反应热。反应后的高温气体(催化剂出口温度≥400℃)进入一级换热器,用来加热脱附热风完成本次循环工艺。CO装置由主机、引风机及电控柜组成,净化装置主机由换热器、催化床(含催化剂)、阻火器和防爆装置等组成。催化燃烧床内部主要由高效换热器、304不锈钢炉膛、燃烧系统以及装载有催化剂的催化燃烧室等组成,炉体表面温度不高于60℃。催化氧化

装置在废气处理系统开车前需要预加热, 预热系统采用 电加热方式,包括控制柜、温度检测器、温度控制器等。 催化剂的选用:本方案选用贵金属(Pt-Pd)催化剂,具 有催化活性高、机械强度高、热稳定性好、压降小、易 于清洗、使用寿命长的特点, 空速为10000 ~ 20000h⁻¹, 目前已成熟应用于VOC废气处理系统上,能够满足排放 要求。温度的控制要求: 在催化氧化床进口安装有加热 器,确保系统各节点气体温度不受废气浓度的变化而有 大的波动。(2)催化剂。堇青石蜂窝瓷体作为第一载体, γ-Al₂O₃和稀土材料为第二载体,以贵金属Pd、Pt、Rh 等为主要活性组分,是一种新型高效的有机废气净化催 化剂。具有流动阻力低、反应起始温度低、活性高、空 速适应范围宽的特点, 其形状为方形蜂窝体, 外形尺寸 是100mm×100mm×40mm(长、宽、高),200目方形孔, 孔密度32个/cm², 堆密度是600-700kg/m³, 贵金Pd、Pt 涂层厚度约100μm, 最佳使用温度是280-650℃, 按正 常操作要求使用,寿命一般为2~3年。

3 应用项目概况

工程名称: 喷漆机库沸石转轮及工艺性通风系统安装。项目内容: 针对飞机喷漆机库设计一套满足喷漆机库温度、湿度工艺需求,并使喷漆所产生的有机废气,经过处理满足环保达标排放要求的工艺性通风系统。治理工艺: 采用送排风机组,通过镀锌保温风管及射流喷口送入喷漆机库大厅,满足机库内温湿度的工艺需求。喷漆所产生的有机废气(VOCs)经前置过滤箱、沸石转轮吸附浓缩、脱附催化燃烧(CO)工艺经44米高排气烟囱达标排放。项目目的:通过对有机废气进行专业性治理,有效减小挥发性有机化合物的排放,治理后严格按《大气污染物综合排放标准》(GB 16297)的相关排放限值执行,非甲烷总烃排放浓度 < 60mg/m³,并应对在线监测达标的需求。

4 设计条件

4.1喷漆机库温、湿度条件

表 1 喷漆机库温、湿度条件对比表

表: · 表示 / in / i							
系统	服务	一一	汨亩℃	室内相	送风量	回风量	排风量
编号	房间	上几	温度℃	对湿度	M³/h	M^3/h	M³/h
ZK1-3	喷漆机						660000
ZK4-6	库大厅	干燥	tn ≥ 25	≥ 30	风机低	频运行	

4.2 废气条件及处理论证

(1)排放风量统计。根据喷漆机库生产数据计算污染物浓度,按照规范要求的通风量和换气次数。计算得

到总排风量按660000m³/h设计。(2)废气成分。由于喷漆机库生产过程包含底漆、面漆两道工序,成分不同,本方案按两种工况设计计算,根据同类项目喷漆工序整理已知的VOC废气成分及占比如下表2、表3。

表2 喷底漆 VOC 废气成分信息表

溶剂类型		CAS NO.	排放浓度	占比 m/m
俗刑矢至		CAS NO.	mg/Nm	%
2-丁酮	MEK	78-93-3	50.00	25.00%
乙酸乙酯	Ethyl acetate	141-78-6	90.00	45.00%
甲苯	Toluene	108-88-3	60.00	30.00%
合计			200.00	100.00%

表3 喷面漆VOC废气成分信息表

溶剂类型		CAS NO.	排放浓度	占比
俗刑矢型		CAS NO.	mg/Nm	m/m %
乙酸丁酯	Butyl acetate	123-86-4	70.00	35.00%
2-戊酮	Methyl propyl ketone	107-87-9	10.00	5.00%
正丁醇	n-Butanol	71-36-3	10.00	5.00%
乙醇	Ethanol	64-17-5	10.00	5.00%
二甲苯	Xylene	1330-20-7	30.00	15.00%
甲苯	Toluene	108-88-3	30.00	15.00%
三甲苯	Trimethylbenzene	108-67-8	30.00	15.00%
乙酸乙酯	Ethyl acetate	141-78-6	10.00	5.00%
合计			200.00	100.00%

(3)废气浓度。根据物料计算的数据以及同类项目 经验评估,本项目废气设计浓度按400mg/m³取值。

4.3 废气排放达标要求

(1) 排放标准。本项目废气治理后挥发性有机物尾气达到《大气污染物综合排放标准》(GB 16297) 规定,排气筒高度不低于43m。(2) 处理效率。VOCs 控制设备去除效率指VOCs 控制设备处理污染物的排放量与处理前污染物的量之比,可通过同时测定处理前后废气中VOCs 排放浓度和排气量,以被去除的VOCs 与处理之前的VOCs 的质量百分比计,具体见下式:

$$P = \frac{\Sigma C_{\hat{\text{m}}} \times Q_{\hat{\text{m}}} - \Sigma C_{\hat{\text{m}}} \times Q_{\hat{\text{m}}}}{\Sigma C_{\hat{\text{m}}} \times Q_{\hat{\text{m}}}} \times 100\%$$

式中:

P——VOCs处理设施的处理效率,%;

 C_{in} —进入处理设施前的 VOCs 浓度,mg/m³;

 Q_{m} —进入处理设施前的排气流量, m³/h;

 $C_{\rm f}$ ——经最终处理后排放入环境空气的 VOCs 浓度, ${
m mg/m}^3$;

 $Q_{\rm fi}$ 一经最终处理后排放如环境空气的排气流量, ${
m m}^3/{
m h}_{\circ}$

表3 系统工艺设计设备配置表

		衣3				
分项	二级 分项	设备	参数名称	単位	指标	备注
			规格	СМН	115000	
			过滤材料		DPA	6x6布置
			终阻力	Pa	250	
	预处	\ 1 \ E EE	过滤材料		F7	6x6布置
	理	过滤器	终阻力	Pa	250	
			过滤材料		F9	6x6布置
			终阻力	Pa	250	
			数量	台	6	
	VOC	沸石	品牌		进口 品牌	
			转轮直径		≥ 3500	
	浓缩	转轮	浓缩倍数	倍	15~25	
	装置	7776	DER	IH	≥ 90%	
			数量	台	6	
			风量	СМН	115000	
		主风机	设计温度	°C	25	
		(防爆防	风压	Pa	2500	
		火花型)		kW	110	
		八化至)	数量	台	6	配消声房
				СМН	7000	PLIAD TO 1/A
工艺		 脱附风机	设计温度	°C	60	
工乙 设计	风机	(防爆防	风压	Pa	3450	
以川	1/4/11	火花型)	功率	kW	15	
			数量	台	6	配消声房
		CO风机		СМН	20000	PLIAD TO 1/A
			设计温度	°C	60	
		(防爆防	风压	Pa	5500	
		火花型)	功率	kW	55	
		八化至)	数量	台	2	配消声房
			规格	СМН	20000	PLIAD TO 1/A
	CO	CO炉体	数量	台	2	
		CONTA	DER	П	≥ 97%	
	设计	 烧嘴	功率	kCal/h	70×10^3	
		功率	数量	台	2	
		- 27十	规格	NCMH	17000	
		脱附	换热形式	INGMITI	板式	
	换热	挽热器 機热器	设计温度	$^{\circ}$ C	550	
		したがく作	数量	台	2	
	器设		型里 規格	NCMH	17000	
	计	尾气 换热器	換热形式	NGMII	板式	
			设计温度	$^{\circ}$ C	450	
		江大が泊	数量	台		
			奴里		2	

5 设计方案

通过计算和优化设计,喷漆机库大厅左右两侧设置设备耳房,每个耳房中设置三套沸石转轮机组。(1)沸石转轮负荷: $115000 \mathrm{m}^3 \mathrm{/h}$, 温度 $25 \, \mathrm{C}$, 每套 34; (2)脱附温度: $\sim 200 \, \mathrm{C}$; (3)转轮净化效率: $\geq 90\%$ (进气浓度 $200 \mathrm{mg/m}^3 \mathrm{mg}$); (4) CO处理负荷: $20000 \mathrm{Nm}^3 \mathrm{/h}$, 每套 14; (5) CO净化效率: $\geq 97\%$; (6) CO系统工作温度: 催化剂出口温度 $\geq 400 \, \mathrm{C}$; (7)排放: 转轮净化后的气体由主风机引到标高约 $11 \mathrm{mg}$ 楼板处的相应送风口; (8)系统主风机、脱附风机、脱附汇总风机(CO风机)均为变频调节;整套设备进行相应的保温处理(室内非阳光照射的表面温度不超过 $60 \, \mathrm{C}$),电机、燃烧器、废气焚烧系统、系统控制元器件等主要关键部件(不含利旧部分)的寿命不低于 $10 \, \mathrm{C}$ 。系统工艺设计设备配置表如表 3。

结语

沸石转轮系统在喷涂行业运用比较广泛,是近几年 跟随环保要求兴起的新型废气处理设备,拥有广泛的市 场前景。在国内沸石转轮在航空领域的使用较少,相关 的案例不多,本项目的成功实施是一次很好的实践。本 项目已经实际投入试生产,废气处理效果良好,达到预 期目的,在后期的大规模生产中计划积累数据,通过 污染物监测和专业公司评价再对这套系统的性价比再 做一个结论性的总结,对大规模推广该技术,具有积 极意义。

参考文献

[1]李文斐, 刘冰, 展飞等.沸石转轮吸附浓缩技术及其运行维护[J].中国环保产业, 2023(11).

[2] 董庆建, 高德坊, 徐健等. 沸石转轮处理工艺在 涂装治理中的应用浅析[J]. 现代涂料与涂装, 2022 (10): 36-38, 57.

[3] 刘欢, 尹树孟, 单晓雯等.催化燃烧催化剂及其制备方法和应用: CN201810996176.5[P].CN110871069A[2024-08-29].

[4] 文勉聪.广州白云国际机场 G3 飞机维修库机库大厅屋面钢结构与通风消防管道综合施工技术 [J]. 中国房地产业,2022 (30):170-173.