基于多样化教学手段的线上线下混合教学探索

——"以电气控制技术与 PLC"课程为例

徐 华 刘永飞

(大连工业大学艺术与信息工程学院,辽宁庄河116499)

摘要:本文以"电气控制技术与PLC"课程为例,分析了线上线下混合式课程的教学手段。在教学设计中,注重线上线下的合理配合,采用具体的灌装自动生产线项目贯穿于整个课程;在教学过程中,利用多媒体手段,融合多种教学方法,例如:SPOC,翻转课堂,思维导图等,丰富课堂气氛,促使学生积极参与,提高学生的主观能动性,做到因材施教,人尽其才,挖掘学生的创造力。本文对线上线下混合式课程教学进行探索,不仅提高了教学效率,更提高了学生的创新能力,为提高职业素养奠定基础。

关键词:混合式教学模式; SPOC; 翻转课堂; 思维导图

一、教学模式改革下的教学分析

(一) 教学课程分析

"电气控制技术与 PLC"课程是面向机械工程、机械电子及智能制造等专业开设的一门专业核心课,是培养应用型技术人才的重要课程。该课程的特点是,实践应用性强,所学的理论知识与实践应用需要紧密结合,既有理论的工作原理又有实践的编程方法,理论性和应用性都很强。

通过本课程的学习,将来学生可以从事电气装配工程师、电气工程师以及 PLC 技术工程师岗位等。如果继续采用传统的教学方法,以教师讲、学生听为主,重理论、轻实践,那么学生毕业步入社会中,在从事相关职业岗位的时候,将很难适应社会发展,因此需要根据专业人才培养方案,以及社会对相关职业岗位能力的要求,对本课程的教学方式方法进行改革,来确定符合社会需求的教学课程内容及教学方法。

(二)学情分析

该课程是在机械工程系相关专业大学三年级上学期开设的,该年级的学生基础课程基本学完,同时英语四/六级、计算机二级也基本考完,考研的话也是在大学四年级才开始准备,因此这段时间比较空闲,可以专心地做科研及项目。

另外,学生经过前期课程的学习,比如电工技术、电子技术、微机原理等,已经有了一定的基础,同时对可以动手操作以及接近未来就业方向的课程应该是很期待的。同时,经过平时教学中,与学生的接触过程中可以了解到学生对实践课程非常热爱,基本上是全员参与,非常积极主动,并善于思考、动手、动脑,不再是课堂上那种只有前1/3学生听课,所以,要调动学生的学习主观能动性,就需要增加丰富的实践环节,做好"玩中学"。

(三)教学方法分析

关于"电气控制技术与 PLC"这门课程的教学方法,很多老师已经做了深入的探究和实践操作改革。

案例教学方法,主要是通过引入实践案例,提出启发性的问题来提高学生的学习积极性和解决问题的主动性;PBL教学方法,是采用"以问题为中心、学生为主体、教师为主导"的实践模式来增强学生自主学习和提高学生解决问题的能力;项目式教学方法,是通过实践项目进行"教、学、做"一体化的教学模式,来提高课堂教学的效果和培养高技能型应用人才;研讨式教学法,是以教师为主导、学生为主体、师生共同完成的教学模式,来提升教学质量,激发学生主动学习的热情。这几种方法都是通过利用经典教学方法来实施的教学改革,此类方法主要是鼓励学生通过主动地完成任务,提出问题并解决问题的方式来提升获取知识的高效性和精确性。

MOOC 平台教学方法,是利用大学生 MOOC 平台,学生按照自己的节奏自主学习,时间自由,并且互联网资源丰富,互动性更好,利于知识的巩固;翻转课堂教学方法,是以学生学习为主导,拓展学科知识的深度和广度,并锻炼学生的知识梳理、重组能力以及知识的表述总结能力;混合式教学模式,不仅使学生掌握了基础的理论知识,还使学生具备了较强的实践分析解决问题能力。这几种方法都是通过利用新兴的教学模式来实施的教学改革,此类方法主要是利用现代化教学手段来提高学生的课堂参与度,有助于培养学生的独立思考能力和运用知识参与实践能力。

二、混合式教学模式构建思路

(一)混合式教学模式构建的整体思路

混合式教学模式构建的整体思路是,整个课程的教学设计是 以项目案例来贯穿整个课程,在课前,学生主要是利用超星平台, 通过文档和视频进行线上基础知识的学习;课堂上主要是通过小 组协同合作来完成线下项目的实践操作;课后,对线下和线上的 问题进行讨论和总结。另外,还可以通过每章节的线上测验及期 末线下项目的成果汇报来对知识进一步巩固。如下表1所示。

表 1 混合式教学模式构建整的体思路

线上线下混合教学——"以电气控制技术与 PLC"课程为例 (项目式)								
实施环 节	主要任务	任务要求	学生工作	教师工作	学习 方式			
学期前	问卷调查	1、确定学生 喜好方向 2、确定 SPOC 项目 小组	提交任务	SPOC 门槛 检测	学习通			
课前(线上)	基础知识	项目引导 视频讲解	自主学习 提交任务 提交疑惑	发布任务 监测进度 在线指导				
	测验	1、了解学生 掌握情况 2、确定线下 教学内容, 疑难点			学习 通 自学			
课中 (线下 +线上)	疑难点讲 解	启发式讲解 翻转课堂	完成小组阶 段性任务展 示、评价	答疑解惑 引导任务 进行 面对面指 导	互学			
	项目实践	仿真探索 实物验证						
	SPOC 小 组项目	自主创新						

216 实践探索 Vol. 4 No. 10 2022

课后 (线上 +线上)	总结评价	巩固提升	思维导图 重点总结	引导归纳	
	布置任务	下节课内容	课前预习	发布任务	互学
	反思工作	做出总结	评价、交流 项目进展	总结经验	
期末(线下)	成果汇报	翻转课堂	完成小组任 务、展示、 答辩、评价	面对面指 导	互学

(二)学期前问卷调查

教师在进行新学期课程教学之前,需要拟一份课程学习调查问卷。该问卷的主要目的是,调查学生的兴趣爱好方向,及对这门课的了解,期待,和是否有参与项目的想法等。

问卷的填写可以在学习通上进行,最后通过数据统计分析结果。通过这种方式,了解学生学情,以及制定出课程教学实施方案,并筛选出愿意参与项目的学生组成 SPOC 课堂项目小组。

(三)课前引导

课前首先由与该章节有关的项目内容或者案例作为引导,提 出问题,引出该章节的基础知识,让学生带着项目内容,有目的 的去学习。

课前主要是对该章节的基础知识通过视频进行讲解以及利用 文档进行知识拓展,学生以自主学习为主,并整理出自己的疑惑, 同时将问题发布在学习通的讨论区上,老师和同学一起进行解答, 集思广益,思维拓展,最后学生总结出自己问题的答案。

同时,学生学完相关的基础知识,要进行大约 5~10 道题的测试,由简到难,通过测试,了解学生对知识点的掌握程度,并整理出难点问题。对于错误率达 70% 以上的问题要进行线下统一讲解,对于个别学生有错误的问题,可以单独讲解,做到因材施教,充分利用课堂时间。

(四)课中SPOC+FCM

课堂上主要采用 SPOC 小班教学模式加上翻转课堂教学模式 (FCM) 相结合的教学方式。

对于有意愿参与项目的学生,组成 SPOC 小班,小班里有若干个小组,每个小组把各自的项目再细分成若干个小任务,根据教学知识来一步一步完成每一个小任务,最终完成一个项目,通过小组形式协同合作完成项目,可以锻炼学生的团队合作精神,以及为人处世的能力。

而对于不愿意参与项目的学生,可以跟着老师进行教学项目的学习。在课堂上可以采用翻转课堂教学模式,让学生自己总结归纳知识,组织语言,利用所学知识,进行项目实践或者仿真探索,充分展示自我能力。

(五)课后反思

每节课结束后,学生需要对本节课的学习内容用思维导图进行知识点总结,对有疑惑的问题,可以在群里交流和学习通上发布讨论,同时反思自己的项目任务进展情况;老师课后要进行课堂反思,总结出课堂上出现的问题,以及学生课堂上的学习气氛,通过反映出来的情况,为上好下一节课奠定基础,并总结经验为以后教学提供参考价值。

(六)期末成果展示

在这一学期期末的时候,本课程的讲授结束,基于课程的项目也将结束,所以在完成项目之后,学生要对自己的项目成果进行展示,汇报,答辩;老师要给出评价意见,以及学生互相评价意见。

三、混合式教学模式实例

以第五章工业自动化项目的 PLC 控制硬件设计为例,来说明

基于多样化教学手段的线上线下教学模式的应用。这一章首先介绍硬件设计的内容,设计中需要考虑的因素、规范和标准,硬件的选型、安装以及接线。最后以灌装自动生产线为例介绍具体设计方法和步骤。

(一)课前引导

课前,在学习通上,由灌装自动生产线项目作为引导,提出问题:如何设计灌装自动生产线PLC控制系统,如何选择PLC型号,如何安装及接线,并发布课程学习任务,通过文档及视频学习本章的基础知识,如PLC系统硬件设计步骤和要求,PLC机型选择,设计电气原理图和接线图,S7-1200基本介绍、通信和安装等,并拓展S7-1200系列型号的特点及选用。

学生学习完后,并做本章的相关知识测试,进行知识巩固,例如,S7-1200最多可以增加几个通信模块,它们安装在CPU模块的哪边?最后学生可以在讨论区上发布疑问,如,怎么根据项目任务和输入输出点数,选择PLC型号和相应的信号模块?

在讨论区,学生可以自由的讨论相关问题,提出自己的想法,以及提出新的疑问;老师可以在讨论区,启发性的提出问题,或者利用互联网资源给予指引,尽量让学生自己找到问题的答案,并总结归纳出来。

(二)课中SPOC+FCM

对于 SPOC 小组的同学,学习完本章后,组长组织协调,小组合作,人人参与,对本小组的 PLC 电气控制项目,认真分析与积极讨论,根据所掌握的知识,设计出本项目的解决方案,选出相应的 PLC 型号和信号模块,以及开关、按钮,并设计出输入、输出信号和控制系统。

对于其他同学,在课堂上采用翻转课堂 FCM 的教学方式,针对灌装自动生产线 PLC 控制系统的设计,分小组进行讨论和分析,设计出本小组的 PLC 控制系统的解决方案,并以小组的形式,上讲台阐述本小组的观点和方案的设计。

老师及其他同学进行倾听,并做出积极鼓励、赞许的点评, 提出有深度的问题,让学生乐意接收,并能积极主动的继续探索, 提高学习的兴趣和主动性。

(三)课后反思

课后根据学生上课的表现情况,分析课程内容设计的合理性, 以及提出的问题的深度及广度,所提问题是否能激发学生的兴趣, 所提问题是否能引起学生的探索欲望,所提问题是否能让学生主 动去学习,查资料,解决问题。

反思应该怎样设计课程内容,以及怎样的话术,才能引起学 生的注意和自主学习的积极性。

最后将反思形成笔记记录下来,以供以后教学参考。

四 结论

基于多样化教学手段的线上线下混合教学模式,不仅利于学生专业知识的掌握,更提高了学生将理论知识运用到实际工作的能力;课堂上课程项目及 SPOC 小班项目的实践,利于学生未来就业的适应能力,同时也利于专业技术的提升,以及工匠精神的塑造也得到了极大的加强。

参考文献:

[1] 何涛.线上线下混合式教学设计——以"新能源汽车高压互锁检测与维修"为例[]]. 时代汽车,2020(07):47-49.

[2] 张艳明. 基于"SPOC+FCM"的混合式教学模式设计与应用研究——以课件制作技能训练课程为例[J]. 赤峰学院学报(自然科学版), 2022(01): 88-92.

本文系 2021 年度省级课题:线上线下混合式一流课程 《电气控制技术与 PLC》成果。