基于大工程观的"电力电子技术"教学方法研究

徐 松 陈 迅 王丽娟 孙 雨

(江苏科技大学自动化学院, 江苏 镇江 212100)

摘要:随着高校教育改革的深入推进,培养具有创新能力的应用型人才成为当前教育工作的重点,这也为电力电子技术课程教学提 出更高的要求。从课程顶层设计出发,应重视课程的设计工作,从而提高电力电子技术的教学质量。将大工程观融入到电力电子技术教 学中、能够从革新课堂教学、加强教学实践、创新实践平台、引导社会实践等方面展开深入的分析。基于此、文章对大工程观下的电力 电子技术教学方法展开分析和研究,阐述了大工程观的内涵,分析出高校电力电子技术教学现状,在此基础上提出了基于大工程观的"电 力电子技术"教学方法,以供参考。

关键词:大工程观;现代电力电子技术;课程教学;实践教学

电力电子技术作为一门新兴的交叉学科,它主要由电力和电 子技术学科共同建设而来的。多学科交叉构建电力电子技术学科, 融入到经济发展的领域, 更好地推动经济发展。然而, 现阶段现 代电子电力技术课程教学与实践的培养模式比较单一, 以市场需 求为导向的创新培养意识不健全,缺乏多维协同的教学实践方法, 有助于提高学生的综合素质能力。

一、大工程观的内涵分析

巧儿莫西斯提出:大工程观的术语是工程师及服务的工程教 育的回归, 而与研究导向的工程科学观相对立, 它强调知识的完 整性和系统性。依托于地方支柱产业以大工程观的理念培养学生 从事工程活动的责任意识和实践能力,为社会培养更多具有较强 综合素质能力的人才, 更好地推动社会经济的发展。

在教育工作中,教育工作者应注重学科交叉融合,引入多元 化的教育素材,开展交叉学科教学讲座,打破学科教学之间的障碍, 并引入大工程观的理念,运用多学科交叉的理论提高教学成效。 构建多学科交叉的协同创新团队,有助于师生运用多学科理论, 更好地解决工程上的问题,形成良好的团队协作能力。与此同时, 教育工作者应充分利用校内外的合作平台, 为学生创设更多的实 践锻炼机会,依托于教育平台开展教学,有助于提高学生的创新 意识。国大工程观视域下的电力电子人才培养,应注重教学改革 和教学创新。

现代电力电子技术在能源应用、转换以及节能减排等方面具 有重要的应用价值。而将大工程观渗透到电力电子技术之中,有 助于学生提高综合素质能力,培养学生的创新思维品质和团队合 作精神,为推动现代产业的创新发展奠定坚实的基础。

二、高校电力电子技术教学现状

(一)教学方法滞后

电力电子技术课程的概念相对较多,它涉及到较广的知识面, 在本节课的学习之前,学生应掌握基本的电工电子知识和电子技 术知识,掌握如何使用万用表和三相调压器等设备。在现阶段, 高校课程教学仍然是以讲授式为主,并根据教材开展教学,应用 多媒体课件辅助教学。但是这种教学模式下,学生的学习兴趣仍 然不高,并且参与科研比赛的学生并不多,大多数学生处于被动 学习的状态,他们难以掌握各类基础知识。在进行电力电子技术 教学时,难以清晰划分变流电路的具体关系。

(二)教学内容落后

电力电子技术的教学内容繁杂、知识点多且零散, 授课的方 式较为单一,这些会造成学生对于电力电子技术繁杂的知识点无 法串联,不能将知识点整合起来用作实际工程应用的分析当中去。

在当前的时代背景下,制造技术不断升级,但是课程教学对这方 面的关注并不多,并且没能改革教学方式和方法,这不利于学生 的高效学习。

(三)实验环节薄弱

受到教学学时和实验条件的影响,现在的电力电子技术课程 存在实验学时短暂、实验内容少的问题。在实验过程中, 应更加 关注学生的人身安全和设备的耐用性。实验后, 学生仅能观察到 教材上的部分结论,并没有自主设计、调试的机会,导致学生的 积极性难以被调动。

三、基于大工程观的"电力电子技术"教学方法

融入大工程观的"现代电力电子技术"课程教学中,教师应 以学生作为课堂教学的中心与主体,实施开展辅助导学工作,将 教师单向的教学模式转变为双向互动的模式。在实践学习活动中, 教师向学生提问, 引导学生掌握基本知识, 形成良好的综合素质 能力。具体而言,基于大工程观的"电力电子技术"教学方法如下:

(一)改革教学内容,改讲教学方法

基于大工程观, 应注重电子电力技术课程教学改革, 并以学生 为核心,构建起相应的学习规范,对学生进行辅导教学,做好授课 系统的构建。在工程实践教学中提出问题、分析问题、引导学生更 好地解决问题,提高学生知识掌握能力和水平,将大工程观融入于 电力电子技术教学中, 对学术讲座推送、拓宽学生视野、引导学生 教学, 具有重要的价值。教育工作者应与时俱进, 从自身做起, 不 断学习,并通过科研项目、企业的调研以及学科会议等途径,更新 个人的知识储备,在课堂上渗透给学生。高等教育应明确基本的教 育大纲, 以教材为参考, 并以任课教师为核心确定教学内容, 发挥 出所有任课教师的作用, 更好地促进学科教学的发展。

与此同时,学校应注重改进教学方法,有效利用点拨引导式 教学, 开拓学生的思维。在实践教学中, 教师应创设启发式教学 情境, 引导学生采用教学法, 并以点带面的方式开展教学工作, 通过更加科学的教学方法进行引导, 拓展学生的学习知识, 开拓 学生的学习视野, 并构建起引导式的教学机制, 实现教师和学生 的共同发展,营造良好的教学氛围,提高学生的学习成效。教师 在教学过程中还可以引入工程实例,利用现代电力电子技术做好 引导,构建起科研实践项目,利用大量的实例提高教学成效。针 对工程实例进行理论分析,并结合实际的教学内容,融入教学实例, 让学生切实掌握实践教学的方式和方法,深刻了解现阶段电力电 子技术的基本方法。

(二)转变教学模式,改善教学条件

若要加强教学实践改革, 优化教学设计, 教师应注重学生专

业知识能力的培养,从而提高他们的知识水平。有效开展工程创新,有助于促进高素质应用人才的发展,更好地达到预期的教学目标。 为此,教师应转变教学模式,通过教学实践对电力电子工程加以改进,提高电力电子技术的水平。通过课程优化促进教学内容的系统化,提高教学的规范性,优化教学的方式和方法。在教学实践过程中,教师应加强理论和实践之间的联系,提高教学的趣味性,将课程与实践融合在一起,优化课程设计,提升与现实工作的关联性。教师在教学中应充分考虑到教学的优化水平,提高学生的思维能力,并通过控制图构建,提高单片机接口应用能力,提高学生的学习兴趣。

在现代教育背景下,采用多种教学工具能够提高教学的成效, 并让学生沉浸于体验活动中,将电子教案、PPT 多媒体课件、AI 人工智能和虚拟现实技术融合在一起。应用现代化教学工具,能 让学生沉浸于相应的场景之中,达到沉浸式教学的成效。而采用 多样化的教学工具,有助于提高多媒体教学的水平,改善教学条件。 教师应利用信息化教学手段,构建新时代的智能教学模式,促进 动画效果的融合。提高教学能力、促进教学优化,利用信息化手 段融入课程教学,应充分保证课程的先进性水平,提升课堂教学 成效。

(三)改善考核方式,构建激励机制

在以往的课程考核机制中,大多数更加注重对学生的考评, 并没能关注授课的质量,没能关注教师教学的情况。为此,学校 应关注教师为主体的教学评价机制改革,优化教学模式质量的考 评,提升课程教学的整体质量,讲学生培养成为新时代具有较强 综合素质能力的人才。在以往的教学评价中,部分教师并未参加 其他教师的听课考评,就直接打出分数,这样也会导致评教工作 并不科学,难以达到公平性。为此,学校应注重教师互评、学生 评价制度的建设,营造良好的教学氛围,不断完善教师评价体系。

除此之外,对学生的评价应改变以往的一张是就按决定成绩的评价方式,应从多角度、全方位进行评价。学校应构建电子电力课程学生考评机制,对学生的知识形态构成、专业技能培养、应用创新潜力展开评价,有助于提高评价的公平性。对学生的评价可以通过学生自评、互评以及教师评定相结合的方式,这样充分调动学生学习的积极性,保障学生能够更加客观地看问题,正确认识自己。以电子电力网络课程建设为平台,通过对教学内容、教学方法和教学手段进行评价,一方面实现了对电子电力课程的整体评价,另一方面实现了对教师和学生的评价,有助于教与学工作的开展。这些评价有助于调动广大师生的参与积极性,学生能够利用课下的时间拓展自己的学习空间,并且在教师的指导下,积极参与到各类科技大赛活动中,获取好成绩。

(四)构建实践平台,鼓励学生参与

从大工程观的角度分析,对电力电子技术课程进行系统的设计,有助于提高学生的创新素质,培养学生形成良好的综合素质能力。在应用管理的过程中,应注重对仿真软件的优化,提高学生的问题解决能力。在教学中涉及到多种仿真软件,包括 PSIM、PSpice、Saber 等,这些软件分析和综合应用有助于提高学生的应用软件的能力。在设计中应充分考虑学生对仿真软件的应用能力,注重软件的操作,让学生在学习中能够夯实电力电子技术课程基础的同时,从社会发展的前沿技术出发,结合社会的需求展开实践操作,融入大工程观,通过打造理论和实践融合的平台,开展专业教学实践活动。构建实践平台应从以下几个方面培养学生的良好品质:

1. 聚焦于创新意识培养

实践平台建设应注重培养学生的创新意识能力。《电力电子技术》课程应依托于实验设备,以实验操作为基础促进学生深入理解和掌握相关概念。合作任务中,每个组应明确各自的任务,并明确每个成员的任务,这样有助于学生形成认真负责的责任意识。通过悉心指导和动手实践的方式,增强学生的自信心,并在实践中让学生理解和体会学习的趣味性,增强学习的积极和创新性。为此,实践平台应制定标准的操作机制和管理方法,注重对学生的监督和管理,让学生在知识学习的同时,学习更多领域的知识,扩大学生的学习视野,做好触类旁通,开发全新的知识。

2. 增强学生社会责任感

在实训中,教师注重学生工程实践能力的培养。在实践教学的过程中,教师应引入更多的创新性热点话题,并结合当下的热点问题展开分析,提高学生的实践探索能力,使学生形成创新品质和实践探索品质,引领学生参与到具体的实习任务之重。在毕业实习阶段,教师应为学生提供自己的实践经验,为学生讲解实习过程中会接触到哪类的设备,真正保障专业教学和社会实践的充分结合。在工程实训方面,教师应注重工程技术难题的分析,以学生自身的兴趣开展因材施教,明确具体的研究目标和研究方向,提高学生的参与性。

3. 创新实践教育与市场需求结合

在实践教学中,教师应注重对学生思维品质的培养,让学生 形成良好的创新精神。在当前的市场环境下,应注重以行业发展 需求为导向,鼓励学生参与到创业实践活动中,形成良好的创新 创业品质。学校可以加强与企业之间的交流与合作,通过领导和 人才之间的交流,让学生形成良好的学习品质,深入学习和探索 优秀的文化,使学生通过实践参与的方式,感受到工作的价值, 并形成艰苦奋斗的良好品格。除此之外,学校还应为学生构建更 多的时间学习平台,包括各类实践、实训平台以及科技园孵化平台, 为学生提供更好的发展动力,真正将创新创业教育与市场发展相 结合,在创新创业实践中践行育人价值,积极引导学生参与到各 类互联网+大赛之中,鼓励学生在创新创业实践过程中形成良好 的专业素养,提高自我的综合素质能力,培养出具有较强创新品 质和较强责任意识的人才。

四、结语

综上所述,融入大工程观开展电力电子技术教学,并在教学中对大工程观进行实践应用,通过理论联系实践的方式,做好对教学内容的优化梳理,提高学生的问题解决能力,引导学生学习更多的先进技术。在工程实践教学中提出问题和分析问题,有助于引导学生更好地解决问题,真正提高学生的问题解决能力。从实践的角度引领学生参与到电力电子技术课程学习之中,有助于达到良好的教学成效,引导学生通过大工程观融入电力电子技术课程学习如何获取知识。高校通过加强课程教学改革,打造引导式的教学模式,通过大工程观让学生形成专业实践能力。

参考文献:

[1] 石荣亮, 陆东平, 张烈平等.《电力电子技术》教学模式 改革的探索与实践[J]. 大众科技, 2022, 24 (03): 136-138.

[2] 孙春虎,王静,方愿捷."电力电子技术"教学实践应用探索[]. 机械研究与应用,2021,34(03):228-230.