基于创新能力培养的工程制图测绘与 CAD 建模实践

姚梓轩 王 琪* 王传杏 黄爱维

(南通理工学院,汽车工程学院,江苏南通226001)

摘要:《工程图学》课程教学结束后,为巩固学习效果,培养学生的创新实践能力,需要开展齿轮泵的测绘与 CAD 建模教学实践活动。为此,本文提出了徒手测绘、整理重构、面向投影关系的工程制图、CAD 建模和总结提升"五步走"的测绘实践教学方法,通过教学实训与探索,提高了同学绘图及其创新实践能力,在校级成图大赛中取得优异成绩,验证了教学成果。

关键词: 机械零部件测绘; 课程实训; CAD 建模; 创新能力培养

机械工程领域,零部件测绘是一项重要技能,它不仅涉及到机械部件的精确测量、记录、绘制等知识,而且需要深入了解机械零件的实际构造、作用和工作原理,在测绘中,才能做到"测要测得准、绘要绘得精"。实际课程中,《工程图学》《AutoCAD》与《机械零部件测绘》这三门课往往是分隔开来,缺乏有效结合,导致学习起来比较枯燥且困难。机械设计过程是由一系列的工作任务构成的。本次徒手测绘、整理重构、面向投影关系的工程制图、CAD 建模和总结提升"五步走"训练方法旨在培养学生徒手绘图能力和逻辑视图能力,在实训中有助于架牢基础知识,激发创新思维能力。

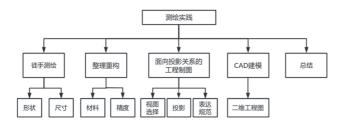


图 1 测绘实践五步走内容

一、徒手测绘

徒手绘图既是工程师必备的重要素质和技能,也是提高学生 工程素养和职业修养的重要途径。本次测绘以齿轮泵为例,采取 以下步骤:

步骤一:了解齿轮泵的工作原理,准确理解各结构间的工作 关系。

步骤二:根据齿轮泵零部件特点,确定拆装与测绘中使用工具、 量具。

步骤三:确定拆装顺序,依据类别分组放置零部件。

零件的形状是虽然多样,但其形状和结构取决于功用、加工及装配要求。根据齿轮泵的工作原理,相关零部件分为三大类:一是工作件,即安装在泵体上起传动作用的齿轮与齿轮轴部件;二是基础件,即为使泵体和轴承能在规定的条件下正常运转所必须的结构部件;三是紧固件,也就是起连接固定作用的部件。拆卸时,先从外部附件入手,再将整体拆成部件,最后将部件拆分成零件,并按照上述类型有序地收集摆放。

步骤四:测量与记录

步骤五: 徒手绘制

形状与尺寸是徒手绘图过程中需要重点体现出的要素。通过 眼观、手测,以绘制工作件、基础件为主(如:齿轮轴是非标零件, 需要测绘,以备后期加工),标准件为辅,高效快速地展现出齿 轮泵各零部件的大致形状,并标注必要尺寸。

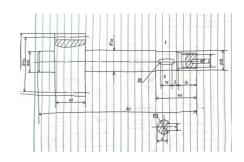


图 2 限时徒手测绘

二、整理重构

徒手速绘确定了零部件基本形状和尺寸,但需要对尺寸进行规整。针对实训需要,根据结构功能要求,对材料、尺寸精度以及加工要求,提出采用 A4 纸进行整理重构,以进一步培养徒手绘图与创新思维的工作能力。明确齿轮泵是一种液压传动部件,用于产生并传送液压油,应满足流量、压力、效率、寿命等要求。在整理重构的 A4 草图上需要完善尺寸及精度、加工及形位精度、热处理要求等标注。

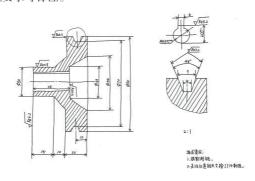


图 3 整理重构的 A4 徒绘

三、面向投影关系的工程制图

(一)绘制齿轮泵零件图

整理重构后,对学生的成果(草图),采取点到点面批的方式,将问题精确到个人,并针对齿轮泵测绘过程中出现的疑惑、不标准、不规范的典型问题进行解答优化,将理论结合实践,加深理解、充盈测绘体验感。将视图选择、投影关系和规范表达等突出问题,在整理重构过程中加以解决。因此,根据零件的结构和功能形态,采用多元化的方法来表达零件的系列外形。

实际操作中,坚持"长对正,高平齐,宽相等"的绘图基本理念,面对标准件或不确定的零部件表达方法时,要求注意勤查标准与规范,确保工程图纸的准确性,推进标注规范化、标准化,并完善加工和技术要求。同时,对轮廓线、点划线、尺寸线的用笔、

粗细、加粗顺序提出建议,以提高图面整洁与规范。

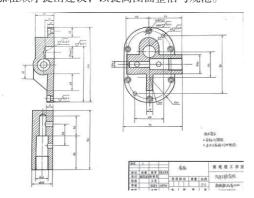


图 4 面向投影关系的工程图训练

(二)绘制齿轮泵装配图

与零件图相比, 装配图需要重视零件间的配合关系、装配要 求。在完成齿轮泵零件图的绘制后,需要对齿轮泵进行拆卸、组 装,并观察齿轮泵的内部结构和工作原理,同时需要明确理解装 配关系。连接螺纹画法是重点问题,不仅要求同学注意内、外螺 纹的表达方式,而且要理解螺钉如何连接泵盖、泵体及其加工关 系。通过交流讨论,不同维度的思考与见解在理论和实践中展开, 汇聚成技巧供学生相互学习、借鉴。

四、CAD 数字建模,提高设计创新能力

数字化建模随着时代要求逐步发展,呈现出现在的基于特征 的建模方法和参数化建模。通过数字化建模,可以更透彻理解齿 轮泵的工作原理、类别、零件间的装配关系等,提供更为清晰、 直观、动态的展示效果,显著提升设计创新能力。

(一)熟练掌握 CAD 制图技巧

基于 Top down 的设计理念, 二维生成图与手工制图类似, 在 CAD 制图中, 绘图版面讲求布局。秉持量少且精、深入思考的原 则,实训最后阶段二维图选择典型零部件:传动轴、泵盖、泵体、 带轮以及总装图等五张图纸, 要求分三日完成, 并进行基于学习 通的混合教学与指导。

实训过程中,强调细节在测绘中的重要性,加深"细节决定 成败"的道理。本次测绘实训主要凸显以下三个细节问题: ①正 确适时切换图层:设置合理的图层不仅有利于区分各个线条间的 关系,还能充分提高绘图效率,有效规避一键清除的爆炸性错误; ②注意点划线尺寸界线外延长度:点划线主要用于展现零件对称 关系,应先用点画线确定零件布局,最后确保点画线长度超过对 称图形外廓 1-2mm; ③绘制装配图时, 装配零部件序号应在同一 条直线上,统一按逆时针或顺时针顺序标注。

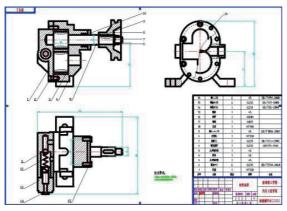


图 5 齿轮泵装配图

(二) 实训成果引导

CAD 制图粗细线条有相应"特征"规范,为设计领域提供了 极大的便利, 但作为工程师, 手工制图仍是必修课。手工制图是 沟通设计与现实的桥梁, 也是拉近纸质绘图与 CAD 绘图的渠道。

创新比赛是检验实训成果的方式之一。行业内成图大赛以培 养应用创新人才为目的,以提高学生的尺规绘图能力和计算机绘 图能力为目标。实训期间,恰逢校内选拔如火如荼。同学们积极 参与, 收获优异成绩, 团队同学获得校成图大赛一等奖(第三名) 等好成绩。由此可见, 绘图时的精确度、创新性、艺术性、技术 能力和团队协作都是规范化绘图的必要因素。

(三)在实践过程中培养创新能力

"五步走"的测绘实践方式不仅在于巩固基础知识、提高手 绘能力,更在于培养同学们的创新思维能力,"精益求精、注重细节、 细心、耐心、专心、专业、敬业、奉献"的"工匠精神"。在实训中, 既提出了对标准规范的具体要求和理解, 在结构材料选择等方面 也给同学们充分的想象和创新空间, 鼓励提出更多新颖的问题, 探讨出独具一格的解决方案。

五、结语

功以才成,业由才广。在徒手测绘、工程制图、CAD 建模的 训练中,把握教与学的全过程互动,将目光聚焦于创新能力培养, 推动观察能力、执行能力、职业能力的萌生与发展。通过"五步 走"测绘实践教学方式,在制图过程中多观察、多发现、多思考, 将机械制图基础知识的理解运用贯穿于整个实践过程中, 用活基 础知识, 勤查标准与规范, 优化版面布局, 使工程图纸规范美观, 推动思维生动活泼, 以此巩固机械制图基础知识框架, 提高识图 制图逻辑能力。

参考文献:

[1] 王妍, 杜秀华, 杨蕊等. 基于 OBE 的工程图学混合式教 学新体系 []]. 图学学报, 2021, 42 (04): 696-702.

[2] 徐瑞洁. 工程制图课程实践教学建设 [[]. 教育教学论坛, 2019 (25): 174-175.

[3] 许小玲. 零部件测绘一体化教学设计——以一级直齿圆柱 齿轮减速器主动齿轮轴为[]]. 内燃机与配件, 2022 (01): 250-

[4] 肖章, 彭如恕.新工科背景下机械零件测绘课程的混合式 教学实践 []]. 教育现代化, 2019, 6(42): 33-34.

基金项目: 2023 年度南通理工学院博士科研启动基金项目 (2023XK(B)02)和教研教改项目(2023JJG003)资助

[作者简介] 姚梓轩: (2003.10-) 女, 江苏徐州人, 本科, 研究方向:新能源汽车工程,数字化设计技术;

*[通讯作者]王琪: (1962.02-), 男, 江苏盐城人, 博士, 教授,研究方向:绿色数字化设计与智能制造技术,车辆工程/ 新能源汽车工程/特种车辆设计制造技术。