霍尔元件副效应测量初探

宋连鹏*周丽孙瑜

(海军大连舰艇学院基础部,辽宁大连116018)

摘要:霍尔法测磁场实验的副效应是实验过程中需要解决的核心问题,通常采用"对称交换测量法"直接消除各个副效应,以减小 对霍尔电压测量的影响,由于各个副效应值大小始终未被测量,因此副效应对测量的影响程度不清,导致"对称交换测量法"对实验结 果精度提升的实际效果不明。本文通过对副效应产生原因的分析,运用"对称交换测量法",结合科学的算法,探索测量出各个副效应 值以及霍尔电压值,并通过各个副效应值与霍尔电压值的比较,全面的评定各副效应对霍尔电压测量的影响程度,为大学物理实验教学 以及与霍尔元件测磁场的相关研究提供有益的参考。

关键词: 副效应; 对称交换测量法; 霍尔电压

霍尔元件是一种基于霍尔效应的半导体磁电器件,能精准感 应磁场变化并转化为电信号,在实验技术上有着广泛的应用,如 工业自动化和汽车电子等领域¹¹¹。基于霍尔元件的霍尔法测磁场 实验中存在的副效应严重的影响应实验测量的精度,通过测量各 副效应的值,可以分析各副效应对测量的影响程度。

1 霍尔元件副效应

1.1 霍尔效应

霍尔效应是运动的载流子(电子或空穴)在磁场中受洛仑兹力 作用引起的现象。载流子发生的偏转引起在垂直电流和磁场的方 向上产生正负电荷的积累,从而形成附加的横向电场^[2]。同时电 荷产生的电场会阻止载流子继续向侧面偏移,当电场增大到能够 使电场力和洛伦兹力相等时,电荷的运动就达到了平衡。对于宽 度为 b,厚度为 d 均匀半导体则有

$$U_{H} = K_{H} I_{s} B$$
(1)
其中系数 $K_{H} = \frac{1}{ned}$ 称为霍尔元件的灵敏度。

1.2 霍尔效应中的副效应

在实际工作中在电流的垂直方向上除了霍尔电压外,还伴随 着其他若干副效应。

1.2.1 不等位电势差 U₀

由于工艺的限制,造成很难把引出的两个电压电极做在同一 等势面上,因此两电极间就有电势差 U₀,称为不等位电势差。U₀ 的方向与电流方向有关,与磁场方向无关。

1.2.2 爱廷豪森效应 U_E

平衡后速率为 v 载流子径直通过霍尔元件,而速率小于或大 于 v 的载流子由于所受的洛伦兹力不同而分别向相反的两侧偏转, 如图 1 所示,从而导致霍尔元件出现一侧快载流子多,温度高; 另一侧慢载流子多,温度低,产生温差电动势 $U_{E^{\circ}}$ U_{E} 方向与霍尔 电流的方向和磁场的方向有关。

图 1 电子运动平均速度(图中 v' < v; v" > v) 1.2.3 能斯特效应 U_N

霍尔元件两个电流电极焊点的接触电阻不同,据帕尔贴效应, 一个极吸热温度升高;另一个极放热温度降低,在两极间引起温 差电流(称为热扩散电流)^[3]。加入磁场后,热扩散电流如同霍尔 电流一样在磁场作用下发生偏转,产生能斯特效应 U_N 。 U_N 的方向与磁场方向有关,与电流方向无关。

1.2.4 里纪一勒杜克效应 U_{RL}

上述热扩散电流的载流子的迁移率也不尽相同,类似于爱廷 豪森效应,产生里纪一勒杜克效应U_{RL}。U_{RL}的方向与磁场方向有关, 与霍尔电流方向无关。

2 霍尔元件副效应测量方法

2.1 对称交换测量法

副效应总是伴随着霍尔效应同时出现,实际测量的电压值是 U_H 、 U_0 、 U_E 、 U_N 、 U_{RL} 的代数和。当前实验中测量霍尔电压采用 的主要方法为"对称交换测量法":

在设定的初始状态下,即

$$+I_{S}+B: U_{1}=+U_{H}+U_{0}+U_{E}+U_{N}+U_{RL}$$
(2)
仅仅改变霍尔电流方向,即

$$-I_{s} + B: U_{2} = -U_{H} - U_{0} - U_{E} + U_{N} + U_{RL}$$
(3)
同时改变霍尔电流方向和磁场方向,即

$$-I_{s} - B: U_{3} = +U_{H} - U_{0} + U_{E} - U_{N} - U_{RL}$$
(4)
仅仅改变磁场方面 即

$$+I_{S} - B: U_{4} = -U_{H} + U_{0} - U_{E} - U_{N} - U_{RL}$$
(5)

通过加减混合运算,可以合理有效的消除某些副效应的影响。 2.2 副效应的获得

"对称交换测量法"运用数学算法消除副效应,同样,也可 以消除霍尔电压,实现对副效应值的测量。

2.2.1 不等位电势值

不等位电势具有独立的变化规律,因此可以直接运用"对称 交换法"获得,即

$$U_0 = \frac{(U_1 - U_2) - (U_3 - U_4)}{4} \tag{(6)}$$

2.2.2 爱廷豪森效应值

霍尔电压和爱廷豪森效应具有相同的变化规律,因此"对称 交换测量法"获得他们的和。即

$$U_{H} + U_{g} = \frac{(U_{1} - U_{2}) + (U_{3} - U_{4})}{4}$$
(7)

爰廷豪森效应是由于载流子浓度分布不均匀引起的,虽然浓度分布受到霍尔电流和磁场的同时影响,但由于载流子的速度满足正态分布规律,速度快的载流子和速度慢的载流子出现的概率 是相同的,爰廷豪森效应受磁场的影响较小,可以近似为恒量, 而霍尔电压则与磁场成线性关系,因此通过不同磁场条件下的爱 廷豪森效应 U_F与霍尔电压 U_H的和,以磁感应强度为自变量作线 性拟合,截距即为爱廷豪森效应值。

2.2.3 能斯特效应值和里纪 – 勒杜克效应值

能斯特效应 U_N 方向和里纪 – 勒杜克效应 U_{RL} 方向具有相同的 变化规律,可以直接获得他们的和,即

$$U_N + U_{RL} = \frac{(U_1 + U_2) - (U_3 + U_4)}{4} \tag{8}$$

3 副效应测量及分析

采用 DH4512B 螺线管磁场测定仪进行实验,线圈半径为 21mm,线圈匝数为1800 匝,有效长度181mm,在轴线的中心附 近可视为匀强场,霍尔元件置于螺线管轴线中心处。

3.1 数据记录

取霍尔电流 $I_s=2mA$,改变励磁电流 I_M ,按照(2)~(5式) 要求设置霍尔电流和励磁电流的方向,依次测出电压值如表 1 所 示

表1 不同励磁电流下电压

I _M (A)	U ₁ (mV)	U ₂ (mV)	U ₃ (mV)	U ₄ (mV)
0.1	0.23	-0.37	0.44	-0.37
0.2	0.69	-0.73	0.90	-0.73
0.3	1.10	-1.15	1.61	-1.15
0.4	1.52	-1.56	1.73	-1.55
0.5	1.93	-1.99	2.14	-1.99

3.2 数据处理

3.2.1 不等位电势 U。

将不同励磁电流测得电压代入(6)式,得到不同条件下的不 等位电势值如表2所示

表 2	不同励磁电流	下不等位电势
~PC =		

I _M (A)	0.1	0.2	0.3	0.4	0.5	
U ₀ (mV)	0.05	0.05	0.05	0.05	0.05	
299 举任亭杰动应 II						

3.2.2 发廷家箖效 U_E

根据毕奥一萨伐尔定律,长度为2l,R半径为的长直螺线管 内轴线上中心点处的磁感应强度为

<i>B</i> –	$\mu_0 lnl$		
D	$\sqrt{R^2 + l^2}$		(9)
	,		

其中 $\mu_0=4\pi \times 10^{-7}$ H/m 为真空磁导率; n=N/2l 为单位长度的 匝数。根据励磁电流计算得到不同条件下的磁感应强度值,如表 3 所示。

将不同励磁电流测得电压代入(7)式,得到不同磁场下的爱 廷豪森效应与霍尔电压的和如表3所示

表 3 不同励磁电流下爱廷豪森效应与霍尔电压的和

I _M (A)	0.1	0.2	0.3	0.4	0.5	
B (m)	1.22	2.43	3.65	4.86	6.08	
$U_H + U_E(mV)$	0.36	0.76	1.18	1.59	2.01	

以磁感应强度为目变量,爱廷豪森效应 U_E 和霍尔电 LU_H 的和为因变量,运用Excel进行线性拟合,结果如图2所示

图 2 U_H+U_E 与 I_M 线性拟合图 由结果可知,在霍尔电流 $I_S=2mA$ 时,爱廷豪森效应 $U_E=$

-0.007mV, 决定系数 R²=1。得出在霍尔电流 I_s=2mA 时,不同磁 场条件下的霍尔电压值,如表 4 所示。

表 4 不同励磁电流下爱廷豪森效应和霍尔电压

I _M (A)	0.1	0.2	0.3	0.4	0.5
U _E (mV)	-0.07	-0.07	-0.07	-0.07	-0.07
U _H (mV)	0.43	0.83	1.25	1.66	2.08

3.2.3 能斯特效应 U_N 和里纪 – 勒杜克效应 U_{RL}

将不同励磁电流测得电压代入(8)式,得到不同条件下的能 斯特效应和里纪-勒杜克效应的和,如表5所示

表 5	不同励磁电流下能斯特效应与里纪 – 勒杜克效应的和
-----	---------------------------

I_M (A)	0.1	0.2	0.3	0.4	0.5
$[u+U]_{m}$ (mV)	0.05	0.05	0.05	0.05	0.05

3.3 结果分析

将不同电流条件下测得的副效应值与霍尔电压理论真值作比, 结果如表 6 所示。

表 6 不同励磁电流下副效应与霍尔电压值之比

I _M (A)	0.1	0.2	0.3	0.4	0.5
U ₀	11.6%	6.0%	4.0%	3.0%	2.4%
U _E	16.3%	8.4%	5.6%	4.2%	3.4%
$U_{\rm N}$ + $U_{\rm RL}$	11.6%	6.0%	4.0%	3.0%	2.4%
总副效应	39.5%	20.4%	13.6%	10.2%	8.2%

可见,副效应对霍尔电压测量的影响程度随磁场的增强而减 弱。

4 结束语

"对称交换测量法"不仅能有效地消除除了爱廷豪森效应以 外的副效应的影响,同时还可以有效的测量出各副效应的值,进 而可以定量分析各副效应对霍尔电压的影响程度,但与热扩散电 流有关的能斯特效应和里纪-勒杜克效应还没有实现独立的测定, 有待进一步研究。

参考文献:

[1] 李潮锐. 霍尔效应测量中的不等位热扩散电势 []]. 物理与 工程.2023.33.83-88.

[2 侯美娜, 安利民. 霍尔效应误差分析及霍尔应用 []]. 大学物 理实验, 2019, 32(5):79-83.

[3] 魏奶萍. 霍尔效应测量螺线管磁场的研究 [J]. 大学物理实验,2020,33(3).38-40.

作者简介: 宋连鹏, 男, (1977-), 辽宁大连, 海军大连 舰艇学院高级实验师, 硕士, 主要从事大学物理实验教学方面的 研究。

* 通信作者: 宋连鹏, 男, (1977-), 辽宁大连, 海军大 连舰艇学院高级实验师, 硕士, 主要从事大学物理实验教学方面 的研究。