2022 年第 4 卷第 06 期 课程论坛 149

新工科背景下基于 CDIO 教学模式软件 实践类课程体系的构建

瞿朝成

(兰州城市学院信息工程学院, 甘肃 兰州 730070)

摘要:在新工科背景下,社会对软件专业人才创新能力、工程实践能力提出了新要求,这就需要高校优化软件专业课程体系,突出软件实践类课程的应用性、实用性价值。围绕 CDIO 教育理念,构建软件实践类课程体系,将工程技术贯穿于实践课程教学中,以提升学生的创新能力、工程实践能力。基于此,本文立足新工科背景,阐述 CDIO 教育模式,分析软件实践类课程教学现状,提出软件实践类课程体系构建路径,探索教学实施策略。

关键词: 新工科; CDIO 教学模式; 软件实践; 课程体系; 构建

在"互联网+"时代下,电子商务、现代农业、电子政务、教育教学均离不开先进软件的支持,这就需要大量的软件开发人才。在社会激烈竞争环境下,如何输出具有工程实践能力、创新思维能力的软件开发人才,成为教师和学校关注的重要问题。基于 CDIO 教育模式,教师可构建软件实践类课程体系,增加实践教学比重,突出专业实践教学的重要性,强化学生软件开发能力、工程实践与创新能力。基于此,本文立足新工科背景,探索基于CDIO 教育模式的软件实践类课程体系的构建路径。

一、CDIO 教育模式概述

CDIO包含了四个学习流程,分别为Conceive(构思)、Design(设计)、Operate(运作)、Implement(实现),能够为学生提供明确的学习、实践思路。在CDIO的培养大纲中,要求工程专业毕业生具备工程系统能力、个人能力、工程基础知识、人际团队能力,成为综合性人才。从软件开发角度看,CDIO教育模式具有完整的生命周期,所以,围绕培养大纲开展课程改革,极其契合软件实践类课程改革的需求。基于此,笔者将CDIO模式的学习流程贯穿于软件类实践课程,优化实践课程体系,激发学生自主学习和发展热情,培养学生软件开发思想、问题解决能力、综合设计能力,培养出具有工程实践能力的应用型人才。

二、软件实践类课程实验教学情况分析

(一)实践教学现状分析

在软件实践类课程中,包含了多门课程,课程体系中的各个课程存在一定联系,但教师往往只讲授本门课程的知识。以程序语言设计课程为例,《C++程序设计》主要包含理论课程、实验课程两个部分,前者重视讲解语法,后者侧重应用语法进行实践。但是,在软件实践类课程中,综合性实验内容较少,这样的情况下,学生很难接触到真实、生动的实验项目,无法真正理解软件开发的概念和思想,导致综合设计能力和实践动手能力不强。

(二)实践课程设计分析

在软件实践类课程中,学校专门设置了开发设计类实验活动, 有效补充了实验教学的不足。但是,当前设计类课程的关联性不 足,学生很难把握设计的关键。同时,在课程设计的题目、运行、考核等方面,多围绕课程内容,较少关联其他学科领域。例如,在程序语言设计课程中,学生主要学习编码技术、程序开发系统,对于数据库技术的课程,学生更多完成基本的操作,无法接触到数据库优化、安全等知识。由此,在当前的软件实践类课程体系下,尽管学生能够掌握一定的操作技能,但工程实践能力、创新能力有待提升。

三、新工科基于 CDIO 教学模式软件实践类课程体系的构建

(一)基于实践项目导向,构建一体化实践体系

要想有效落实 CDIO 教学模式, 教师必须要围绕技术、能力与知识, 构建一个指向实践项目的课程体系, 将构思、设计、运行与实施渗透到软件工程实践中。在统筹实验课程的同时, 应重点培养学生系统设计能力、创新能力和综合能力。由于软件工程专业知识实践性强, 知识覆盖面广泛, 建设实践类课程体系具有重要意义。具体而言, 按照递进式、分级化的方式, 设计四个阶段的工程项目: 软件工程实践 I, 重点训练学生的算法和程序结构思维, 通过设计小型项目, 帮助学生掌握基本算法思想和设计; 软件工程实践 II, 通过布置小型项目训练, 锻炼学生软件界面设计能力; 软件工程实践 II, 通过下发多个项目, 引导学生结合需求,设计数据库,强化其数据库设计能力; 软件工程实践 IV, 重在布置综合性训练项目,全面提升学生软件开发能力,最终让学生掌握设计产品级别软件的能力。

(二)坚持分层化教学体系,搭建专业实践平台

在开展 CDIO 实践教学活动时,教师需要明确实验课程教学目的,引导学生认识基本方法、原理和概念,使其能在实验中内化知识、形成工程能力。根据课程体系、教学计划和专业教学目标,构建分层化的实验教学体系,设定创新型、设计型、应用型和基础型的实验。根据不同课程实验教学特点,可详细划分为验证性实验、演示性实验、综合性实验、设计性实验,由教师根据教学进度把握实验深度。为培养学生处理、解决综合问题的能力,在修订实验教学计划时,应合理删减验证性和演示性实验项目,

150 课程论坛 Vol. 4 No. 06 2022

重点培养学生问题分析、设计和综合问题处理能力。在实践类课程教学保障层面,应根据不同实践课程的内容和方向,整合软件和硬件资源,搭建智能化、工程化、专业化的实践和实验平台,为学生提供良好的工程实验环境,确保实验环境与社会发展需求同步。

(三)利用多方面实践资源,构建课内外实践体系

为构建软件工程实践类课程体系,教师必须要利用多方面实践资源。在校内,要运用校内实训和实践资源,开展专业实习、毕业设计、科技小组、学科竞赛、工作室等活动;在校外,要通过加强产教融合的方式,引入外包项目,对接社会需求与工程教学实践,构建课内外相结合的实践体系,让学生从参与课程实践入手,逐步接触实践项目,参与学科竞赛,实现创新发展。在实践教学中,教师要组建多学科交叉的创新创业队伍,让学生组建实践团队,共同完成校内外的实践项目,并运用知识去探索新领域。如此,学生可开阔眼界,优化知识体系,提升自身创新能力和工程素质。此外,教师应围绕CDIO工程认证与实践,吸引和邀请更多行业专家参与实践教学,提供更多实践资源。

(四)革新实践评价体系,强化实践工作技能

在信息化、新工科时代,社会不仅注重学生知识水平,还要求其具备较强的实践技能。因此,教师可围绕 CDIO 体系,构建实践评估体系,评价学生的交流能力、终身学习能力、团队协作能力、系统调试能力、问题解决能力,激励其提升自身职业道德、工程能力和知识应用能力,为学生走上职业道路奠定基础。通过明确考核评价目标,发挥评价的监督和激励作用、监督教师教学过程、检验学生学习效果,为改进实践教学方案提供依据。在具体考核评价层面,采用全程考核的方式,加强日常实践考核力度。通过采用多种方法、不同标准,检验学生团队协作能力、个人能力、专业水平。在具体应用中,根据项目制作和实验、项目方案论证、项目优化与总结等内容,合理分配实践考核占比,只有学生完成全部项目才能达到较高的考核分数,有效锻炼学生工程实践能力。此外,要重视学生自我评价、学生之间评价,鼓励学生综合运用多学科知识,培养其工作技能、创业精神。

四、基于 CDIO 模式的软件实践类课程教学改革和实施

(一)实践教学初识阶段

在实践类课程体系下,每一门实践课程都是学生接触工程基础的重要内容,这就需要学生掌握扎实的基础。在初识阶段,教师需要重点引导学生分析实验方法和基本理论,不能够将 CDIO 的学习流程贯穿于教学活动中。首先,教师应布置课程实验内容,让学生根据实验范围进行构思,使其能够整合实验相关的其他资料,结合项目需求进行设计。这样,学生可迅速把握实验目的,认识该项实验活动的意义,促使其积极地投入精力并将其完成。在实践活动中,如何实现设计是学生面临的难题。在学生认识项目实验占据的地位后,能够主动耗费时间去学习和验证。最后,教师需要提示学生进行测试和调试工作,及时发现实验中存在的

问题,验证实验的完成情况。通过将构思、设计、运行和实现融 人课程体系,教师能够锻炼学生工程思维,培养其综合设计能力、 项目实践能力。

(二)实践教学提升阶段

基于实践课程体系与 CDIO 理念的融合, 教师可明确培养学生项目实战能力的目标, 这就需要集中精力去开发实验相关的项目。为了丰富实践教学内容, 教师应充分利用课程设计, 提升实践教学价值。在具体设计中, 教师也需要引入 CDIO 理念。一方面, 课程设计中要考虑多方面内容, 以及真实的项目, 项目设计包含课程体系中的其他课程内容, 以提升学生的个人能力。另一方面, 采用模拟真实项目的方法设计课程, 组建多人项目团队, 调整项目实施难度, 锻炼学生团队协作能力。

(三)实践教学巩固阶段

在课程设计环节,教师需要以本门课程为核心,既需要涉及 其他课程内容,也需要重点突出本课程内容。在具体实施过程中, 教师应统筹软件实践类课程,根据实际项目需求,定位项目设计 的重点。为更好地达成软件实践类课程的教学目标,可通过开展 校内软件开发竞赛、推荐学生进入软件开发企业、鼓励学生参加 省市和国家级软件开发竞赛,以及公布软件开发方向的毕业论文 选题,引导学生根据实际情况,综合运用多种课程知识。这样, 学生在学习中能够综合课程体系中的知识,也能在项目中接触到 最新的行业内容。

五、结语

综上所述,围绕 CDIO 教育模式构建软件实践类课程体系, 关乎新工科建设、软件工程专业建设、专业学生的职业发展。因 此,高校和教师应结合软件实践类课程教学情况,围绕 CDIO 的 四个能力层面,通过构建一体化教学体系、搭建专业实践平台、 构建课内外实践体系、革新实践考核体系等方式,有效促进 CDIO 模式与实践教学的融合,在教师教学实践和学生学习过程中体现 构思、设计、实现、运行四个方面,锻炼学生需求分析、问题解 决能力、综合设计能力,使其成为适应时代需求的工程应用型人才。

参考文献:

[1] 周晶平, 覃俊, 曾广平. 新工科背景下软件工程专业课程设计课程群研究[]]. 现代计算机, 2018 (32): 53-56.

[2] 邱林润, 李炳. 新工科背景下应用型本科实践教学研究[J]. 农村经济与科技, 2017, 28 (22): 216-217.

[3] 刘冰月, 刘蕾 .CDIO 教学模式在 Java 系列课程实践教学体系建设中的应用 [J]. 软件工程, 2019, 22(6): 56-59.

基金项目: 甘肃省教育科学规划课题 "基于 CDIO 模式的软件开发类课程的实践与探索"(GS[2018]GHBBKZ001)。

作者简介:瞿朝成(1979-),男,甘肃兰州人,硕士,副教授。研究方向:软件应用开发、网络应用技术。