核壳结构 TiO₂的合成、结构及应用研究

朱彦北

(日本产业技术综合研究所)

摘要:由于钛白粉成本低、天然丰产、环境友好、丰富的多晶体、良好的化学稳定性和优异的光学性能,在物理、 化学和材料科学领域具有重要意义。壳核结构钛白粉的合成已经投入了大量的工作,在其表面包覆一层二氧化钛 (TiO₂)而制得。由于核壳结构 TiO₂ 极高的比表面积、较大的孔隙体积、可调节的孔隙结构和形貌以及纳米尺度效 应,显示出巨大的潜力。本文系统评价了新型核壳型 TiO₂ 材料的合成方法,讨论了它们独特的组成结构,总结了它 们的应用,并对未来的研究提出了展望。

关键词:二氧化钛;核壳结构;合成方法;组成结构

1 引言

钛白粉是一种重要的材料在环境污染物净化、CO₂ 减排、光催化制氢、染料敏化太阳能电、和生物技术等 方面具有重要的应用价值,这主要是由于它具有结构稳 定、紫外光响应能力强、光氧化性强、成本低、热稳定 性高等独特优点^[1-5]。而 TiO₂虽然具有紫外吸收能力,但 由于其带隙较大,可见光和红外吸收能力较差。这极大 地限制了它的催化效率,因为紫外光只占太阳能的小部 分(~5%),但可见光和近红外光的比例分别为~43%和 ~52%^[6-8]。通过与其他组分共掺杂,减小 TiO₂的带隙形成 异质结或形成核壳结构,探索了多种提高 TiO₂催化效率 的策略。TiO₂的电子结构和微/纳米结构不仅影响其物理 和化学性能。不同结构的 TiO₂已被制备出来并应用于不 同的领域,表现出优异的性能。

"核壳"一词最早提出于 20 世纪 90 年代初,当时 研究人员合成了同心多层半导体纳米颗粒¹⁹。每一种核壳 结构的纳米颗粒都由一个核(内部材料)和一个壳(外 层材料)组成^[10]。壳核结构钛白粉作为一种核壳材料, 其核壳成分不同, 合成方法新颖并且结构独特, 具有广 阔的应用前景。近十年来,在壳核结构钛白粉中 TiO2因 其增强的可见光吸收和催化效率,在析氢、光热等方面 的应用,成为一种理想的催化剂^[11-12]。构建核壳结构 TiO₂ 是一种优化其性能而不产生明显副作用的极好策略。相 比之下, 掺杂金属或稀有金属的方法可能会增加潜在的 毒性和副作用,特别是当它用于一些特定的应用,如光 热治疗。其中,核壳结构 TiO2因其具有高比表面积、大 孔体积和可调孔结构等特点而受到越来越多的关注。高 表面积可以为吸附和催化等表面或界面相关过程提供丰 富的活性位点。大的孔隙体积在结构变化的适应方面表 现出很大的潜力。

本文简要介绍了核壳结构 TiO₂ 材料的一般合成路 线。总结了核壳结构 TiO₂材料可控合成的关键问题。并 讨论了核壳结构 TiO₂材料在能源和环境相关领域的应用 及其结构与性能的关系。对该领域的未来发展进行了简 要的总结和展望。

2 核壳结构 Ti02 的合成与结构

核壳结构钛白粉由不同结构的 TiO₂组成。例如, Tian 等^[13]通过脉冲激光汽化(PLV)制备了核壳结构 TiO₂纳米 颗粒,其中核心是结晶的金红石 TiO₂,外壳由 Ti 元素 (Ti³⁺)作为非晶态 Ti₂O₃的低氧化态组成。Li 等^[14]通过阳 极氧化将生长在钛箔上的非晶态纳米管进行氨退火,制 备了具有非晶态外壳和晶态锐钛矿核的工程核壳结构 TiO₂纳米管。在锐钛矿 TiO₂晶核和由 Ti₄O₃组成的非晶壳 之间显示结构变化的核壳组装。阐明了制备核壳结构金 红石 TiO₂的综合结构和形成机理,而锐钛矿晶型的形成 机理尚不清楚。

2.1 核壳结构 TiO2的合成

钛白粉主要成分为 TiO₂,由于其稳定的化学性质和 优异的白度、遮盖力、光泽度等光学特性,为了满足各 行业对钛白粉不同性能指标(如白度、遮盖力、吸油量、 分散性等)的要求,在纯钛白粉的基础上,国内外科研 机构和厂家开展了包膜钛白粉和包核钛白粉的研发和应 用。纯钛白粉、包膜钛白粉、包核钛白粉的区别如图 1 所示。

图 1 纯钛白粉、包膜钛白粉、包核钛白粉的区别示 意图

核壳结构 TiO₂的合成在重构层上出现了由含钛氧化 物的较低氧化态组成的外层无序层。最外层的原子无序 表面和非对称周期性,以及外层的无序和缺陷性质。在 最外层下面有几个缺陷的金红石层,包括从金红石基上 移位的间隙钛(Ti)原子,TiO₂晶格中间质 Ti 原子的不 断丢失创造了破坏远距离原子秩序和形成非晶态结构的 可能性。核壳结构 TiO₂的合成方法分为:在非破坏过程 中,核壳结构 TiO₂在不破坏晶格结构的情况下合成,形成中空的核壳型结构,即晶芯和晶壳之间存在中间层。 相反,破坏性合成会部分破坏 TiO₂的晶格结构,导致在结晶良好的芯子上生成非晶态壳层。非破坏性方法不适合于晶体核-非晶壳结构 TiO₂的合成。因为非破坏性方法为晶体生长提供了理想的环境,而不是破坏晶体对称性而产生非晶壳层的破坏性气氛,从而形成晶体核-非晶壳层结构。

2.2 核壳结构 TiO₂的结构

2.2.1 空心晶体核-晶体壳结构 TiO2

晶核-晶壳结构 TiO₂具有中间层(空心核壳结构)主 要基于水热法的无损合成。通常添加模板或表面活性剂 (如葡萄糖、蔗糖、聚乙烯醇吡咯烷酮和二乙烯三胺) 作为合成的指导。如图 2 所示,葡萄糖和蔗糖通常被碳 化,作为钛离子部分水解产物的沉积模板,煅烧后形成 中间层^[15]。二乙烯三胺(DETA)和聚乙烯吡咯烷酮(PVP) 作为结构导向剂吸引钛物种,导致形成无机复合材料, 然后转化为前驱体球体。最后,内部的球体收缩成了一 个核心。然而,在某些情况下,合成不需要表面活性剂 或模板剂。

图 2 无损核壳型 TiO₂的合成方案^[15]

通过无损合成方法得到的具有代表性的晶核-晶壳 结构的掺杂中间层的 TiO₂,即它是球形的,在晶核和中 间层之间有一个清晰的中间层腔。研究发现,介球腔在 加速光催化效率方面起着重要作用,可引起光在腔内的 多次反射。由于晶芯-晶壳结构的 TiO₂可分为光滑型和粗 糙型两种。光滑或粗糙的外壳的形成主要取决于合成条 件(如水热时间和煅烧),而不是模板/表面活性剂,即 外壳因水热时间的延长或煅烧而变得粗糙。

2.2.2 晶体核/非晶壳结构 TiO2

在破坏性合成方法中,通常是合成或购买的原始 TiO₂要经过破坏其表面层的处理。因此,剩余的 TiO₂晶 芯被无序的 TiO₂壳层所包围,形成了非晶态壳层结构的 TiO₂。利用氢气在 200℃左右的温度和 20 bar 的压力下处 理原始的 TiO₂纳米颗粒 5 天,导致黑色 TiO₂的形成¹⁰⁶。 此外,还发现黑色 TiO₂由两个相组成:结构良好的结晶 TiO₂为核,非晶态表面层为壳。这种特殊的核壳结构 TiO₂ 不仅保留了晶体 TiO₂的催化活性,而且提高了可见光和 红外吸收能力。

与未被破坏的晶核--晶壳结构 TiO₂不同,晶核--非晶 壳结构 TiO₂原有的对称性被破坏。这种核壳结构的 TiO₂ 与覆在晶芯上的无序表面层具有相同的外观特征,但根 据核壳化学状态的不同,可以区分不同结构之间的差异。 一些破坏性的修饰方法可以在晶格体或表面引入氧空位 和 Ti^{3+} 态。表面的紊乱和缺陷(如氧空位和 Ti^{3+})导致破 坏的核壳 TiO_2 呈黑色,与原始的 TiO_2 和未破坏的核壳 TiO_2 的白色完全不同。根据 Ti^{3+} 的生成和分布,被破坏的 核壳结构 TiO_2 可分为4种类型:(1) Ti^{4+} -非晶壳+ Ti^{4+} 的 晶核,(2) Ti^{4+} -非晶壳+ Ti^{3+} 的晶核,(3) Ti^{3+} -非晶壳+ Ti^{4+} 的 晶核,(4) Ti^{3+} -非晶壳+ Ti^{3+} 的晶核。

3 核壳结构 Ti0₂的应用

作为一种具有独特表面和光学特性的新材料,核壳 结构 TiO₂被用于各种应用,包括锂和钠离子存储电池电 极,降解污染物、有机染料和析氢的催化剂,以及光热 消融癌细胞的治疗材料。

3.1 锂和钠离子储存

由于其优异的理化性能和在锂离子电池中的潜在应 用前景, TiO2晶体备受关注。通过调整 TiO2的结构可以 提高其充放电稳定性。此外,具有大活性表面积的 TiO₂ 结构可以提供快速的锂插入/萃取动力学,从而获得优良 的功率密度。与商用 TiO2相比, 中空晶核-晶壳结构的中 间层 TiO2具有更大的表面积和特殊的核-壳结构,是锂离 子存储的理想材料。相比之下, 晶核-非晶壳结构 TiO₂ 由于其核壳之间没有中间层而不能用于存储锂离子。中 空晶核-晶壳结构的 TiO₂具有优异的速率性能,在 3℃和 5℃的速率下保持了~172 和 170mAh/g 的高容量。这归因 于 TiO2球体的纳米尺寸的砌块结构, 它提供了良好的电 接触,并促进了锂离子的扩散。Guo 等进一步支持了这 一观点,他们合成了类似的空心核壳结构 TiO₂,并证明 其在锂离子电池中具有良好的循环性能[17]。电极的稳定 可逆容量为 177mAh/g, 循环 80 次后仍能保持在 $154 \text{mAh/g}^{[17]}$

Yan 等研究了双晶核壳 TiO₂作为锂离子电池和钠离 子电池的阳极^{118]}。他们使用简单的一锅溶剂热方法合成 了晶核-晶壳结构的 TiO₂,其中单斜 TiO₂相纳米片壳覆盖 锐钛矿 TiO₂球芯。核壳结构的 TiO₂阳极不仅对锂离子电 池具有良好的性能,而且对钠离子电池也具有良好的性 能。采用核壳型 TiO₂阳极的锂离子电池具有较高的初始 放电容量(114.8 mAh/g),在 5040 mA/g(30°C)的超高 电流密度下,经过 375 次循环后,放电容量可维持在 91.7 mAh/g。此外,将核壳型 TiO₂阳极应用于钠离子电池 (NIB),在 850 mA/g深度循环后,放电速率降至 85 mA/g, 放电容量完全恢复为 168.6 mAh/g。NIB 在 0.01 V ~ 2.5 V 之间循环 50 次后,放电容量在 170 mA/g 的速率下保持 在 131 mAh/g^[18]。

3.2 光催化制氢

通过元素掺杂和缺氧增强可见光吸收已经得到了广泛的关注,但这类修饰仍然存在可见光吸收和转化不足的问题。Wang等成功合成了一种晶体TiO2核非晶TiO2-_{*}H_{*}

壳型催化剂(通过氢等离子辅助的新方法),用于可见光照射下产氢,与原始 TiO₂相比,产氢效率显著提高^[19]。 增强的可见光吸收归因于核壳结构 TiO₂的非晶态壳层诱 导的局部表面等离子体共振。Yang 等还评价了晶体核-非晶壳结构 TiO₂在甲醇水制氢中的应用^[20]。在 300W 氙 灯照射下,核壳型 TiO₂的产氢能力比原始金红石型 TiO₂ 提高了 158 倍,这是由于电子和体空穴的调节输运以及 核壳型结构产生的巨大活性位点^[20]。此外,考虑了表面 缺陷(非晶态壳层/表面氧空位),以促进光生载流子的 分离,从而提高量子产率。此外,Ti³⁺本身并不能直接强 化产 H₂,因为 Ti³⁺ 3d¹态在导带以下约 1.0 eV,不适合进 行 H₂O 还原^[20]。

Hu 研究通过氢处理制备的黑色 TiO₂ (有 Pt 助催化 剂),用于热-光混合催化从甲醇裂解水和 CH₄的 CO₂重 整制氢^[21]。虽然 TiO₂催化剂没有提到具有核壳结构,但 由于氢处理,它将由晶体核和非晶态壳组成。此外,通 过电子顺磁共振(EPR)可以在大块中检测到 Ti³⁺,而 X 射线光电子能谱技术(XPS)则不能在表层中检测到,这 说明 Ti³⁺只存在于核中,即黑色 TiO₂具有含有 Ti³⁺的晶核 和含有 Ti⁴⁺的非晶态壳层^[21]。核壳黑色 TiO₂具有明显的可 见光和红外吸收能力,这与氧空位的形成有关。此外, 在可见光照射下,牺牲剂水裂解时,黑色 TiO₂(含 Pt 助催 化剂)在整个可见光范围内的反应温度为 280℃时,产氢 率为 497 mmol/h gcat⁻¹,表观量子效率(QE)为 65.7%^[22]。 核壳结构 TiO₂与原始 TiO₂在催化制氢方面的,其中核壳 结构 TiO₂在缺陷密度、光电流、产氢速率等方面具有优 势。

3.3 催化降解有机污染物

研究了晶核-非晶态壳结构 TiO2 光催化降解染料的 性能,与原始TiO2相比有显著提高。Wang等人探索了一 种用于染料降解的晶体 TiO2核-非晶态 TiO2-xHx 外壳催化 剂^[19]。核壳结构 TiO₂催化剂在 5 min 内完全降解甲基橙, 比原始 TiO₂(12 min) 快得多^[19]。Wu 等利用水热法合成 的晶体核-非晶壳结构 TiO₂, 随后在氢流中热处理, 在模 拟太阳光照射下降解甲基橙、罗丹明 6G 和艳绿三种有机 染料^[23]。与其他无核壳结构的 TiO₂相比, 核壳结构的 TiO₂ 对这三种染料的光降解效率都有所提高。在Ti³⁺结构TiO₂ 的 Ti⁴⁺-非晶壳晶核和 Ti⁴⁺结构 TiO₂的 Ti³⁺-非晶壳晶核上 分别对亚甲基蓝的光降解性能进行了评价,这与非晶态 壳层中的氧空位和外层的羟基有关。晶芯-非晶态壳结构 TiO2 对有机污染物具有优异的光催化降解效率,这得益 于其丰富的缺陷(如氧空位和 Ti³⁺)。此外, 空位可以与 非晶态壳中的羟基结合,为光生空穴运输到 TiO2表面提 供跳变通道。

不同于晶核-非晶壳结构 TiO₂由于缺陷而提高了对 有机污染物的降解效率,中空晶核-晶壳结构 TiO₂(即带 有中间层)具有较大的表面积和腔内多次反射的光,具 有良好的光降解有机污染物的性能。Guo 等研究了中空 晶体共晶壳结构 TiO₂对罗丹明(RhB)降解的显著增强, 与原始 TiO₂(P25)相比。在 30min 内,中空晶核-晶壳 结构的 TiO₂降解了 99.6%以上的 RhB, 而 P25 TiO₂仅降 解了 60%的 RhB^[24]。

4 核壳结构钛白粉的工艺介绍

4.1 研磨

研磨工序利用超细研磨机分别对助剂和钛白粉进行 超细研磨,通过错珠的研磨、碰撞将钛白粉和助剂细化 到一定粒径, 使钛白粉和助剂在包覆工序讨程中更容易 的进行粘附,超细研磨的目的是为第二道包核工序做准 备。注释:助剂分散性差,附着力差。但钛白粉有非常 强的附着力(用手抓一把钛白粉放开后,用肥皂洗几次 才能洗干净),同时兼有非常好的分散性(325目的钛白 粉在未研磨以前粒子为45微米,放在矿泉水瓶里面稍微 摇晃就变为 0.3 微米)。助剂没有超细研磨以前分散性差, 附着力差,没有超细研磨以前就像麦子一样,用手抓一 把麦子,手松开后,手掌上不会粘附任何东西。把麦子 磨成细粉后,抓一把面粉,手松开后,手上会粘附一层 面粉。研磨后的助剂,作为内核更容易与钛白粉进行粘 附。钛白粉没有超细研磨以前本身就有很好的附着力和 分散性,研磨后具有更强的附着力。通过超细研磨,实 现了钛白粉对助剂的更好包覆。

4.2 包核

借助固体物质在机械力化学效应作用下,诱发了一些普通热能和其他作用无法进行的化学作用(既有物理作用又有化学作用),致使包膜物质(钛白粉)的微细子颗粒与母颗粒物质(内核助剂)之间产生了一定化学位移和界面反应,形成子颗粒(钛白粉)对母颗粒(内核助剂)的表层包覆。注释:把研磨后的助剂和钛白粉输送到包核机中,利用包核机中的滚动、搅拌、碰触进行包覆。类比为制作汤圆的过程,把汤圆馅(助剂粒子)和淀粉(钛白粉)通过滚动、搅拌、碰触,完成了淀粉层对汤圆馅的均匀包覆。同理,钛白粉完成了对助剂的包覆。

4.3 初分散

因为包覆好的钛白粉粒子容易团聚成大颗粒,利用 初分散罐,在负压条件、定量风量的作用下,将团聚的 包核钛白粉大颗粒分散开,形成半成品小颗粒。注释: 包核后的钛白粉团聚在一起的大颗粒,好像石榴一样由 一颗颗钛白粉粒子紧紧的聚在一起,初分散的过程就是 将整颗的石榴掰成多块小的石榴块。

4.4 分散

在负压条件下,通过一定的风力,将初分散的半成 品颗粒继续分散,形成包核钛白粉的成品单颗粒子。分 散过程就像将石榴小块分解成一粒一粒的石榴籽。除包 覆完整的单颗粒子外,还有未包覆完整的半成品单颗粒 子需要进一步包覆,因此全部需要进入下一步均质工序。 4.5 润湿

润湿罐的功能主要是配制、储存化学试剂。

4.6 均质

通过润湿罐中的化学药剂,对进入均质罐中的三种 粒子(已包核合格的专用钛白粉单粒子、包核不合格的 专用钛白粉单粒子、原材料钛白粉单粒子)进行雾化、 碰触,修补好了包覆不完整、不合格的颗粒,促使包核 后钛白粉的表层更为紧密而且不易裂开。进入均质罐进 行雾化和气流碰触的粒子有三种,第一种是已包核合格 的专用钛白粉(包覆的原材料钛白粉一般比较厚),第二 种是包核不合格的专用钛白粉(包覆的原材料钛白粉比 较薄、出现助剂裸露现象),第三种是原材料钛白粉。该 道工序好像制作汤圆一样,把以上三种类型的粒子通过 雾化和气流碰触,以修补包覆不完整、不合格的颗粒。

4.7 调整

调整过程类似于气流粉碎。在气流的作用下,将钛 白粉的粒径调整到合适的范围,充分保障钛白粉的特性。 注释:就像过筛子一样把粒径过大的颗粒和过小的颗粒 都筛分出去,只留下粒径合格的颗粒。

4.8 干燥

对包核后的钛白粉颗粒通过热风烘干,进入产品料 仓。

4.9 收料

把烘干后的包核钛白粉收集到收料器中。

4.10 包装

通过自动包装机进行包装。

5 结论

核壳结构 TiO2 是一种新型的半导电材料。目前已经 发展了两种合成方法:破坏性方法和非破坏性方法。在 非破坏过程中,核壳结构 TiO2在不破坏晶格结构的情况 下合成,形成中空的核壳型结构,即晶芯和晶壳之间存 在中间层。相反,破坏性合成会部分破坏 TiO₂的晶格结 构、导致在结晶良好的芯子上生成非晶态壳层。中空核 壳结构的 TiO₂有两种类型,一种是光滑壳型,另一种是 粗糙壳型。晶芯-非晶壳 TiO2具有 Ti4+-非晶壳+Ti4+、Ti4+-非晶壳+Ti³⁺、Ti³⁺-非晶壳+Ti⁴⁺、Ti³⁺-非晶壳+Ti³⁺四种结构。 对核壳结构 TiO2的各种应用进行了探索。空心晶核-晶壳 结构的 TiO₂因其大表面积、高稳定性、大倍率和优异的 功率密度而成为锂离子电池的优良电极材料。晶核-非晶 壳结构 TiO₂是一种很有前途的光热治疗候选者,由于缺 陷导致其在近红外区域的光吸收增强。核壳结构中的缺 陷还可以提高 TiO2对水的裂解和光催化降解有机污染物 的效率,尤其是在可见光照射下。

核壳结构 TiO₂ 通过控制缺陷和 Ti³⁺的含量和分布, 可以调节核-非晶壳型 TiO₂的性能。合成一种新型的核壳 结构 TiO₂,即"中空晶核-非晶壳型 TiO₂",不仅具有更 大的表面积,而且能带隙更窄,是一种很有意义的研究 方向。这些都是未来核壳结构 TiO₂的研究方向,核壳结 构 TiO₂的性能需要与其明确的核壳结构相关联。此外, 得到的关系可以指导探索核壳结构 TiO₂的新应用。

参考文献:

[1]黄锐,菅泽,韩生.二氧化钛在储能中的设计和应用 []].应用技术学报,2022,22(03):235-241.

[2]顿硕攀,郭续更.上转换纳米材料在染料敏化太阳 能 电 池 中 的 应 用 研 究 进 展 [J]. 化 学 研 究,2022,33(04):327-336.

[3]李歌,马子然,赵俊平,王宝冬.黑二氧化钛的制备及 其在催化领域的应用[]].工业催化,2022,30(06):1-20.

[4]张子琦,程璐,刘文凤.核-壳结构纳米复合电介质 储能特性研究进展[]].绝缘材料,2022,55(05):1-9.

[5]王佳赫,刘大勇,刘伟,王林,董彪.纳米 TiO2 光催化 抗菌应用的研究进展[]].应用化学,2022,39(04):629-646.

[6]任浩,于然波.中空多壳层结构 TiO₂及其复合材料的合成及应用[[].科学通报.2019.64(34):3546-3561.

[7]李大玉,张文韬,张超.不同种类金属掺杂改性 TiO₂ 材料光催化性能的研究进展[J]. 材料导 报,2019,33(23):3900-3907.

[8]陈昱,王京钰,李维尊,鞠美庭.新型二氧化钛基光催 化材料的研究进展[]].材料工程,2016,44(03):103-113.

[9]郝贵敏,贾春阳,涂亮亮,张家强.TiO₂光催化核壳材 料的研究进展[]].材料导报,2011,25(13):25-30.

[10]彭子青,谌伟庆,马洪波,黄思富,石秋杰.核壳结构 纳米复合材料在催化中的应用[J].化工进 展,2010,29(08):1461-1467.

[11] 宁向莉,张颖,王伟.多层核-壳结构复合微球材料 制备研究进展[]].化学通报,2009,72(11):962-972.

[12]谢添华,柳松.核壳型二氧化钛复合纳米材料研究 进展[]].无机盐工业,2007(07):8-11.

[13]Tian M, Mahjouri–Samani M, Eres G, et al. Structure and formation mechanism of black TiO_2 nanoparticles[J]. ACS nano, 2015, 9(10): 10482–10488.

[14]Li J, Liu C H, Li X, et al. Unraveling the origin of visible light capture by core – shell TiO_2 nanotubes[J]. Chemistry of Materials, 2016, 28(12): 4467–4475.

[15]Zhang W, Tian Y, He H, et al. Recent advances in the synthesis of hierarchically mesoporous TiO₂ materials for energy and environmental applications[J]. National Science Review, 2020, 7(11): 1702–1725.

[16]Chen X, Liu L, Yu P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746–750.

[17]Sun L, Li Z, Li Z, et al. Design and mechanism of core - shell TiO₂ nanoparticles as a high-performance

(上接第 64 页)

photothermal agent[J]. Nanoscale, 2017, 9(42): 16183–16192.

[18]Yan Z, Liu L, Tan J, et al. One-pot synthesis of bicrystalline titanium dioxide spheres with a core - shell structure as anode materials for lithium and sodium ion batteries[J]. Journal of Power Sources, 2014, 269: 37–45.

[19]Wang Z, Yang C, Lin T, et al. H - doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance[J]. Advanced Functional Materials, 2013, 23(43): 5444–5450.

[20]Yang Y, Liu G, Irvine J T S, et al. Enhanced photocatalytic H_2 production in core – shell engineered rutile TiO₂[]]. Advanced Materials, 2016, 28(28): 5850–5856.

[21]Han B, Wei W, Chang L, et al. Efficient visible light

photocatalytic CO₂ reforming of CH₄[J]. ACS Catalysis, 2016, 6(2): 494–497.

[22]Han B, Hu Y H. Highly efficient temperature–induced visible light photocatalytic hydrogen production from water[J]. The Journal of Physical Chemistry C, 2015, 119(33): 18927–18934.

[23]Wu M C, Chen C H, Huang W K, et al. Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO_2 nanofibers with core-shell structure[J]. Scientific reports, 2017, 7(1): 1–12.

[24]Guo H, Tian D, Liu L, et al. Core – shell TiO_2 microsphere with enhanced photocatalytic activity and improved lithium storage[J]. Journal of Solid State Chemistry, 2013, 201: 137–143.