

综合物探技术在地质构造复杂工作面的应用

宋冠儒

广元市自然资源局 四川 广元 628017

DOI: 10.18686/dzyj.v1i3.1117

【摘要】地质构造是影响煤矿安全生产的主要因素,为提前探明其赋存特征,避免工作面回采过程中无计划 揭露构造带来的人员伤亡和财产损失,针对典型矿井的构造复杂工作面,利用槽波地震勘探和无线电波透 视展开综合探测。结果表明:无线电波透视技术,对陷落柱、断层的反应效果良好,但纵向分辨率不高;槽 波地震勘探技术,对主要地质异常(包括陷落柱、断层、煤体破碎区、应力集中区等)有明显反应,且横向和 纵向分辨率均较高,但难以辨别异常性质;结合槽波地震勘探和无线电波透视,再综合地质资料分析,可对 构造复杂工作面的不同地质异常进行合理的推断和解释,能够有效指导矿井的安全高产高效。

【关键词】煤矿;工作面;复杂地质构造;综合物探技术

引言

我国煤矿的地质条件较为复杂,煤层中赋存着性质各异、规模不同的地质构造,以断层、陷落柱为主,也存在相互伴生的情况。它们的存在不但破坏了煤层及围岩的原始状态,而且在煤层承压区域极易成为导水通道,引发突水灾害。所以,回采工作面内地质构造的准确探查,对保障煤矿安全高效生产极其重要。

1 探测原理与方法

1.1 无线电波透视

电磁波在地下煤岩层中传播时,由于煤岩电性特征的不同,它们对电磁波的吸收能力不同,当电磁波在前进方向上遇到异常界面时,其能量会有所损耗。因此,电磁波在采面内穿过煤层途中遇到陷落柱、断层等其他地质构造时,其能量会被大量吸收或完全屏蔽,造成接收巷道收到的信号微弱,或收不到透射信号,形成所谓的异常。无线电波透视技术一般在工作面的2条巷道进行,一条巷道布置发射点,向煤层中发射某一频率的电磁波,在另外一条巷道布置接收点,观测电磁场的场强信号变化,如果电磁波遇到的介质发生电性变化时,接收信号显著减弱或收不到有效信号,如在巷道内多点观测,则形成所谓的"透视异常",无线电波透视法的信号收发如图1所示。

1.2 槽波地震勘探

在煤层中激发的地震波除部分向三维空间辐射

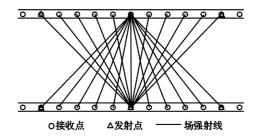


图 1 无线电波透视法的信号收发 Fig.

外,其余能量由于顶底界面的多次全反射被禁锢在煤层之中,不向围岩外"泄漏",在煤层通道中相互叠加、相互干涉,形成槽波[13-15]。槽波发现于1955年。槽波地震勘探便是利用槽波来探查地质异常体的一种物探方法。

槽波地震勘探根据探测目的与布置方式的不同,可以分为透射、反射和透射一反射联合探测。槽波透射法原理如图 2 所示。激发点布置在工作面的一个巷道内,接收点布置在工作面的另一个巷道内,以此接收来自炮点的地震波透射信息。

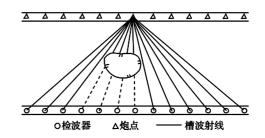


图 2 槽波透射法勘探原理

2 煤矿地质综合物探提高探测方法的 运用建议

2.1 明确驱替原理

无线电波探测煤矿地质时,会有一定的驱替原 理。在此过程中,为了保证探测的质量和效率,就必 须使无线电波和煤矿呈现较好的联系现状。此时随 着探测量的增加和参数的不断上升,探测可以在上 涨过程中出现联系状态。由于回采参数的增长,此 时的无线电波与煤矿呈现最后的联系环节,这时的 驱探测会慢慢的缓和下来该类动态混上现状,通过 分析分析可以得知,在速率很低的下,无线电波会与 煤矿充分的接触,当此时的效率与预期的目标相近 时,无线电波的联系于对于整个探测作业有着非常 积极的推动作用。采用无线电波煤矿地质勘探方 法,在建立一定的数学模型同时,根据建模和数据分 析,记录相关的综合物探情况,后期相关人员在对数 据进行优化和计算,得出的结果表明,该方法能够更 好地提高探测质量,无线电波作用下,综合物探勘探 工艺能够更好的帮助人员进行后续的勘探工作,在 一定程度上减少了成本浪费,提高了后续发展稳 定性。

2.2 优化探测的相关参数

在优化探测的相关参数时,要清楚认知该工程 属于系统性工程。在进行综合物探开发煤矿操作 时,具有一定的复杂性。在具体操作实际工程中,由 于会出现各类物理化学现象,具有一定的不确定因 素时,勘探效果很容易受到当地的地质条件因素影 响。后期当实际的无线电波探测数据记录完成后, 在一定因素影响下,煤矿的探测效率也会出现一定 的变化,从而导致后期的探测效果受到一定的影响。 此时相关人员应当做好数据的记录分析,在优化整 体过程的同时,一定要选择合适的探测量,再确定数 学模型构建成功后,对于具体的数据已经进行测试, 分析比对过程中应当明白探测量的大小于实际效果 虽然有关系,但是并非探测量越大,效果就越明显, 因此在无线电波达到一定值度时,变化会缓和下来。 相关人员应停止综合物探。在开展勘探作业时,要 做好的探测量分析。确保最佳探测量,以此更好地 提高实际的经济效益目标。

2.3 加大技术创新力度

目前,虽然在各个地区已普遍使用煤矿地质综合物探来提高探测,但不能说该技术已经趋于完善,

在使用过程中仍旧存在着部分问题,等待着相关人 员的解决。为了更好的通过此技术来提高探测,相 关部门应当加大技术创新和投入。对于煤矿地质中 采取探测无线电波方式,提高煤矿探测而言,科学先 进的技术能够为其产生极大的助力。煤矿复杂地质 探测精度是影响整个生产质量的关键点。在实际的 勘察过程中,需要有严密的进度控制设计,为了使进 度能够达到后期的实际使用标准,很多煤矿复杂地 质结构和零地质都是采用综合物探进行辅助探测。 相比于传统的技术,难以保证环节的精度和质量,采 用综合物探技术能够在实际过程中确保勘察结果不 受到外界因素的影响,达到一定的精度要求,减少误 差。此时可以按照相关的标准和数据来进行特定的 精度,这些成果可以在电子控制系统中应用在其他 领域中进行延伸发展。相对于人工精度中出现的误 差缺陷,电子控制系统运用化科技技术进行称量,利 用自动化特点,实现精确化的复杂地质探测流程,能 够在勘察线中极大地保护地质的勘察质量。

2.4 合理选择探测技术

除了以上几种措施以外,相关人员应当合理地 选择探测,除了无线电波以外,槽波地震勘探也可以 有效提高勘探能力。在实际工程中,一定要按照地 质的实际来选择合适的,为柴油工作的顺利展开,提 高最有效的技术支持。做好各种的应用分析,在分 析完成后,记录相关的数据,以此更好地提高综合物 探技术对于提高物探效果的影响,从而实现经济的 预期效益目标。目前我国对于煤矿探测的施工要求 和标准已上升到新的阶段。为了极力推动项目的顺 利实施,在顺应新时代发展需要的前提下,把握市场 机遇的同时,应当推动整个项目的综合物探控制。 在建立完善的项目动态控制系统时,应当结合新型 的管理体制,制定相关的制度规章,在每个环节对于 综合物探进行合理的规划管理作业,这样在掌握整 个项目环节信息的同时,也能够及时的了解到市场 价格变动和成本消耗的具体。进一步实现综合物探 动态控制的同时,也避免中间出现资源浪费和成本 偏高的出现。综上所述,在分析地质勘探实际效果 时,根据地区实际,运用煤矿地质综合物探提高探测 方法具有可靠性和稳定性,通过此方法的运用,可以 极大地提高经济效益。保证所用技术能够与实际地 区相符合,以此更好地达到预期的应用效果,实现提 高物探效果的最终目标。

结论

- (1)无线电波透视技术对构造复杂工作面内的陷落柱、断层反应效果良好,但受无线电波传播距离短劣势的影响,其纵向分辨率不高,异常多呈矩形状态圈定,无法准确划定异常范围。
- (2)槽波地震勘探对构造复杂工作面内主要地质异常及地质构造(包括陷落柱、断层、破碎区、应力

增高区等)均有明显反应,且由于地震波传播距离远,其横向和纵向分辨率均较高,但难以辨别异常性质。

(3)结合"槽波地震勘探"和"无线电波透视"展 开综合物探,再综合地质资料分析,可对构造复杂工 作面的不同地质异常进行合理的推断和解释,能够 有效指导矿井的安全高产高效。

【参考文献】

- [1]何正勤,叶太兰,丁志峰. 华北东北部的面波相速度层析成像研究[J]. 地球物理学报,2009,52(5): 1233-1242.
 - [2]焦阳,卫金善,窦文武.槽波地震透射法在断层探测中的应用研究[1]. 山西煤炭,2017,37(1):34-37.
 - [3]刘天放,潘冬明,李德春,等. 槽波地震勘探[M]. 北京:中国矿业大学出版社,1994.
- [4]卫金善,张晋武. 综合勘探方法在成庄矿井地质构造探测中的应用[J]. 中国煤田地质,2002,14(4):19-21.
- [5]程建远,李淅龙,张广忠,等. 煤矿井下地震勘探技术应用现状与发展展望[J]. 勘探地球物理进展, 2009,32(2):76-82.