300MW煤电机组凝结水泵导叶出口角大小对生命周期 的影响

朱永斌^{1*} 陈 彦¹ 姜英栋² 许 峥¹ 1. 上海水泵制造有限公司,上海 201414 2. 山西国峰煤电有限责任公司,山西省汾阳市 032200

摘 要:300 MW煤电机组凝结水泵,多次出现下述状况:1. 冷态试验,各项性能参数都达标,但在电站正常系统中,泵的流量达不到规定数值,且伴有喘振情况,泵明显在汽化状态下工作。在流量达到设计流量870 m³/h以上时,水泵扬程迅速下降,不能满足工作要求。2. 导叶体出口边容易产生汽蚀现象。所以,对凝结泵全流道进行流场计算分析,发现导叶设计存在不合理的地方,最后针对导叶进行了优化设计,增加使用导叶体使用寿命。

关键词:凝结水泵;导叶体流场分析;导叶体汽蚀;导叶体使用寿命

一、引言

本文通过软件方法,对凝结泵整机进行流动数值仿真分析。从流动机理层面出发,分析上述问题的原因,并且对 导叶进行优化设计,对比优化前后的流场变化和使用情况,凝结泵参数如表1所示。

设计流量	870 m ³ /h
扬程	294 mH ₂ O
转速	1490 rpm
NPSHr	3.2 mH ₂ O
轴功率	850 kW
比转速	143.4

表1 凝结泵的设计参数

通过整泵的建模分析,包括泵外筒、诱导轮、叶轮、导叶等所有过流部件,利用流动基本方程(质量守恒方程、 动量守恒方程、能量守恒方程)控制下对流体的数值模拟。通过数值模拟,我们可以得到极其复杂问题的流场内各 个位置上的基本物理量,如速度、压力等的分布,以及这些物理量随时间的变换情况,确定漩涡分布特性、空化特性 及脱流区等。还可以计算相关的物理量,如流体机械中扭矩、水力损失、效率等,并结合相关软件进行优化设计^[2]。 CFD技术就很好的克服了模型试验和理论分析的弱点,在计算机上进行一个特定的计算,就好比实现一次虚拟的流体 力学实验^[3]。因此,合理有效地利用好CFD方法分析流体力学问题,对解决工程应用问题有重要的意义。本次优化结 果直接在用户现场进行使用验证。

二、凝结泵几何造型及网格划分

图1 导叶几何模型

采用Unigraphics NX 10.0软件对凝结泵全流道进行几何造型,整个计算区域包括进水筒体、诱导轮、首级叶轮、

*通讯作者:朱永斌,1982年4月,男,汉族,上海奉贤人,上海水泵制造有限公司/技术中心主任,中级工程师, 本科。研究方向:水泵设计。 导叶、次级叶轮,压出室。在建模过程中简化了不影响计算分析的细部,比如壳体上的螺母等。为了准确的模拟凝结 泵各过流部件内部流动,并且在数值计算上尽量减少误差,采用高精度六面体网格对各过流部件进行网格划分,网格 总数为851万,主要体现导叶模型过程,如图1和图2所示。

图2 导叶网格

具体的网格数量分布见表2。

表2 各过流部件网格数量

进水筒体	诱导轮	首级叶轮	导叶	次级叶轮	压出室
343235	722970	494560	535227	491400	254351

采用ANSYS CFX对凝结泵各过流部件的内部流动进行数值模拟,进口边界为进水筒体进口断面,指定总压为边界 条件,出口边界为压出室出口断面,指定流量为边界条件。湍流模型采用能较好的预测及模拟分离涡的SST k-ω模型, 以最大残差小于0.001作为计算收敛的唯一标准。根据凝结泵的实际运行参数,给定CFD计算边界条件如表3所示^[3]。

水の戸井辺戸赤口	表3	计算边界条件	F
----------	----	--------	---

CFD求解器	ANSYS CFX		
参考压力	0 kPa		
温度	45°C		
进口	(1) 压力: 0.4 atm (2) 5%湍流度		
出口	流量出口		
固壁边界	光滑,无滑移		
空间离散方法			
湍流模型	Shear Stress Transport (SST)		
计算收敛准则	最大残差低于10-3		

三、凝结泵各部件流动分析

对凝结泵全流场进行数值分析计算,得到计算性能曲线如图3所示。

注: 1. 本报告中提到的计算效率和计算扬程为水力效率和理论扬程,未考虑泵实际运行过程中的泄漏损失,圆盘

36

损失,机械损失等损失^[1]。

2. 为了得到扬程不低于170 m的最大流量,对原型泵的工况最大计算到160%Q,后续的改型和优化的计算工况点为Q/Qd(设计流量)=50%、75%、90%、100%、110%、120%。

四、设计工况

对设计工况,全流道的计算扬程为304.53 m。通过对影响过流的零部件进行分析计算可知,有多种原因影响其性能,主要体现在导叶设计方面。

通过分析计算,在导叶尾部存在较明显的脱流(图4b),导叶头部入口角与水流匹配度不好(图3a),有明显的 正冲角,导叶的后半段存在脱流和回流,导叶设计不是很合理,存在较大的压损,有优化空间^{[1][2]}。

为方便起见,定义导叶损失系数 $Sgv = \sum_{i=1}^{7} (Pgini - Pgouti) / (\rho g \times He)$

其中Pgini为第i个导叶的进口总压, Pgouti为第i个导叶的出口总压, He为该工况下泵的总扬程计算结果如表4所示^[1]。

表4 不同工况下导叶损失统计

Q/Qd	0.5	0.75	0.9	1.0	1.1	1.2
Sgv (%)	49.69	25.26	18.12	15.91	13.99	12.79

(一)导叶轴面流线如图5所示

图5 导叶轴面流线图

从图5可以看出大流量下导叶尾部有叶道涡,导叶流线顺畅,由于流量较大,导叶的脱流现象相对于设计工况有 所好转,但是导叶内流速增大,能量损失加大,导致整机扬程下降。

优化导叶的进出口角及型线,几何造型如图6所示。

37

⁽二)优化导叶

图6 优化导叶的进出口角及型线图

优化后的导叶内部速度矢量图如图7所示,优化后的导叶头部入口角与来流方向匹配性较好,冲击损失减小;导 叶背面的脱流情况明显好于原型泵,原型泵的导叶背面出现了大范围的回流情况,优化后回流消失,水流顺着导叶型 线流向出口。优化后的导叶损失见表5^[1]。

图7 优化前后的导叶几何对比

图8 优化前后导叶头部和尾部流态以及使用情况对比

Q/Qd	0.5	0.75	0.9	1.0	1.1	1.2
优化前扬程	356.50	333.54	319.92	304.53	284.60	264.87
优化后扬程	372.27	357.80	340.72	328.11	309.10	287.86
优化前效率	57.21	73.93	79.12	81.22	82.66	82.90
优化后效率	57.90	73.96	78.34	80.65	81.93	81.70

表6 优化前后的外特性数据表

从上表可以看出,通过对导叶的优化设计,在水力效率基本不变的前提下,显著提高了扬程,而且导叶使用寿命 明显增加。

五、结语

通过CFD计算分析发现,凝结泵整体设计优良,首次级叶轮及诱导轮水力性能优秀,导叶存在优化空间。优化导 叶型线在水力效率基本不变的前提下,显著提高了扬程,也大大提高了使用寿命。

参考文献:

[1]关醒凡.现代泵理论与设计[M].北京:宇航出版社, 2011.

[2]张克危.流体机械原理:上册[M].北京:机械出版社, 2001.

[3]郭术义.陈举华.流固耦合应用研究进展[J].济南大学学报, 2004.