

浅谈锅炉压力容器检验方法与措施

吴秀庆

临沂市特种设备检验研究院 山东 临沂 276000

【摘 要】:锅炉作为能量转换的设备,在实际生活中是种比较实用的承压设备,其危险性比较高,因此在锅炉实用的过程中,要强化操作人员操作的规范性,一旦出现事故,对操作人员的人身安全造成威胁的同时,对企业同样带来不小的经济损失,为保障锅炉的常态化运行,规避事故的发生,对锅炉压力容器采取相应的检验,保障锅炉的正常使用,基于此背景下,本文进行深化探究,希望为行业发展带来一定的参考价值。

【关键词】:锅炉;压力容器;检验;方法与策略

引言

现如今随着国家经济的发展与科学技术的应用,锅炉压力容器的使用需求逐渐上升,为本保障锅炉压力容器使用的安全性,因此要采用高效的措施确保锅炉压力容器可以正常运行,近些年来由于压力容器出现问题造成的安全事故逐渐上升,所以要强化对锅炉压力容器的质量检查,提升锅炉压力容器的使用安全性能,在实际的生产发展中,因锅炉故障发生的安全事故不在少数,所以要强化锅炉压力容器生产质量,保障锅炉压力容器符合相应的生产要求,确保锅炉压力容器质量,重视锅炉压力容器在生产过程中的质量监督和安全检验,当锅炉压力容器长期的投入生产中时,环境因素也会对锅炉压力容器带来影响,长期使用会导致锅炉压力容器管道遭受腐蚀,造成锅炉压力容器的器壁厚度变薄,对锅炉压力容器的受压强度带来影响,因此要定期的对压力容器进行检查,保障其运行的安全性和稳定性。

一、锅炉压力容器检验的重要性

锅炉压力容器指的是锅炉和压力容器的总称,在实际的生活生产中发挥着重要的作用,锅炉主要是通过燃料的使用,可以将水转化成蒸汽的机械设备,压力容器因其特殊的工艺性质,可以承受一定的压力,但由于锅炉压力容器在长期高温高压的环境下使用,极易造成锅炉压力容器的磨损情况,因此要强化锅炉压力容器的检查工作,避免由于检验工作的不及时,造成锅炉压力容器出现严重的磨损而引发爆炸事故的发生,提升锅炉检验的安全意识,提升锅炉压力容器的安全系数有着重要意义。

二、锅炉压力容器的检验方法

2.1 无损检验法

2.1.1 射线检验法

采用射线检验法是指运用 x 射线或 γ 射线照射压力容器的焊缝,若是压力容器的焊缝出现问题,则会改变射线的

衰减,从而影响透射射线强度的变化,再利用相应的检测方法进行检测,便会知晓焊缝的问题所在,可以借助胶片感光,对透射线强的进行检测,判断压力容器焊缝中出现问题的性质、大小、形状以及位置等,在检验的过程中,操作人员要做好相关的防护,由于射线本身对于人身体有一定的危害,因此要做好个人防护措施。

2.1.2 超声波检验法

在锅炉压力容器的检验方法中, 超声波检验法较为常 见,借助超声波技术对压力容器进行检验,采用超声波系作 用于材料后的反射情况,与超声波击穿材料所使用的时间, 从而判断材料的内部是有否存在缺陷,超声波检测的优势较 为突出,主要是超声波检测的灵敏度更强,检测时间较短, 检测厚度较高,与其他的检测方法相比,对人体的危害程度 极小,更容易确定材料存在缺陷的位置和大小,因此超声检 测的性价比更高,但与此同时,在实际应用中超声波检测的 应用性不高,在超声波检测时,可能会出现对材料检测相对 不直观的情况, 在实际的技术应用上来说, 超声波检测需要 较为精锐的技术支持,在通常情况下,超声波检测的结果常 常会受到检测工作人员的主观影响,其检测的结果不容易留 存,因此仅能对一些表面平滑的材料进行检测,对凹凸不平 的材料进行检测时操作难度较高,同时对进行超声波检测的 工作人员的技术经验有着较高的要求,遇到厚度较大的材料 时,其检验的效果不佳。

2.1.3 磁粉检验法

磁粉检验法是指,锅炉压力容器存在缺陷处的漏磁场和磁粉之间产生作用,由于压力容器表面和近表面缺陷磁导率与钢铁磁导率存在差异,造成磁粉的积累,从而实现磁粉检验,借助磁粉进行检验,可以有效的控制检验的成本,其成本较低,且检测的速度较为迅速,结果有着较强的精准性,唯一的不足之处在于,该种检验的方法仅可以在铁磁材料的

表面进行检测,其检测材料种类有限。

2.1.4 渗透检验法

渗透检验法主要指的是通过视觉来判断材料是否含有缺 陷,通过液体毛细现象和固体燃料产生,在压力容器内部, 在可能出现缺陷的地方喷洒渗透剂,渗透剂会逐渐的渗入到 缺陷口处,再将其表面处理干净,待渗透剂干燥后,在喷上 显像剂,其缺陷的位置便会显现出来,借助渗透剂检测锅炉 压力容器的缺陷较为清晰,且较为直观,有着很高的灵敏度, 但其检测速度较为缓慢, 采用渗透检验的方法可以不受工 件形状和缺陷方向的限制, 因此此种方法的使用范围也较为 广泛。

2.2 宏观检测法

2.2.1 目视法

宏观检查是外观检查, 手电筒, 放大镜和内窥镜可以提 供帮助。可以用肉眼扫描压力容器的大面积范围,结构变化 和细微的颜色。手电筒平行于容器进行照射,

可以将压力容器表面的裂纹、坑槽或鼓包、凹凸不平等 情况都能清晰的显示出来。

2.2.2 捶击检查

过去,最常用的检验压力容器的方法是使用约 0.5 千克 的手锤,执行锤击测试。 用锤子轻轻敲打容器或其部分的 金属表面,有经验的人可以根据声音和小锤子的反弹程度来 判断压力的状态是否良好。如果锤子的声音清晰且反射良 好,则表明压力容器被敲击部位没有较大得质量缺陷。

三、锅炉压力容器的质量控制策略

3.1 控制材料

在对锅炉压力容器质量的控制因素中, 最为关键的是锅 炉压力容器的材料控制,也是锅炉压力容器质量控制中不可 缺少的一项, 所以锅炉压力容器的制造单位要对材料的质量 加以管控, 做好材料的验收以及入库等各个环节的质量控 制,对提升锅炉压力容器质量有着重要意义,也是企业实现 长治久安发展的重要途径,对提升产品在市场的竞争实力有 着积极的作用,对企业的发展起到保护的作用。

3.2 工艺控制

为确保锅炉压力融资的产品质量,因此要严格的按照相 应的工艺流程来进行生产,要根据设计图纸的相关要求来选 取适宜的生产工艺来讲行锅炉压力容器的制作加工,并结合 实际的加工情况来调整和创新生产工艺。实际的生产工艺包 含着工装维修使用,模具设计以及图样审查等等,在生产工 艺的各个环节中, 现场的工作人员都要参照相应的制度和标 准进行,从源头上抓好质量,有益于产品的质量控制,促使 工艺得到顺利的进行。

3.3 焊接控制

在锅炉压力容器的加工过程中,焊接是加工所有加工手 段中最为重要的, 在锅炉的制造中, 需要对平板之间进行焊 接,对筒节与封头进行焊接,以及对筒节之间都需要焊接来 完成, 其焊接的质量直接关系到锅炉制造的水平, 因此要严 格的控制好焊接的工艺,对影响焊接质量的各个因素进行严 格的管控,对焊接材料质量,焊接人员的焊接水准,以及焊 接工艺的质量,焊接设备质量等等得到相应的控制,做好相 关的整理记录, 一旦发现问题, 要及时的做好记录并向上层 反应情况,促使整个焊接的程序都保障在相应的规定下完 成,保障锅炉压力容器的焊接环节在高质量的前提下完成。

3.4 检测工作的控制

在整个锅炉压力容器制造的过程中, 常常会受到各个因 素的影响,因而导致锅炉压力容器的质量出现问题,严重的 情况下影响到了产品的正常使用,为了控制好生产过程中的 各个因素,以此要强化对锅炉压力容器制造各个环节的管 控,加强监督管理,并定制完善的检验制度,确保锅炉压力 容器的生产质量加以保障。

结语

随着社会市场经济的发展,锅炉压力容器的应用范围逐 渐的扩大,与大众生活联系逐渐加深,为因锅炉压力容器有 着较高的危险性,为避免安全事故的发生带来的人身安全和 财产损失,要加强对锅炉压力容器使用时的日常维修和检 查,借助先进的检验技术和方式对压力容器的质量进行检 验,在检测的过程中发现问题,要进行相应的维修,严重的 情况下要进行更换,确保锅炉压力容器可以正常的投入到生 产中。

参考文献:

- [1] 冯艇.浅谈锅炉压力容器检验方法与措施[J].科技风, 2013, (24):40-40.
- [2] 黄淑贞.浅谈锅炉压力容器检验方法与措施[J].城市建设理论研究 (电子版), 2014, (22):5960-5961.
- [3] 郑本强.锅炉压力容器检验方法与措施探讨[J].科学与财富, 2016, (3):585-585.