云平台支持下的轨道交通自动售检票系统研究

张瑞福 王忠燎 陈林耀

(浙江幸福轨道交通运营管理有限公司,浙江温州 325000)

摘要:在城市现代化发展中,轨道交通运输系统也在不断升级革新,有效提高了城市运输能力、解决了交通系统拥堵等问题。就检票系统而言,从最初的人工检票逐渐发展成自动售检票模式,将城市轨道交通中的售票、检票、计费等集成在自动化系统中。在信息化程度不断深入的背景下,轨道交通自动售检票(AFC)系统会在云平台的加持下进一步完善、推广,其应用价值也会越发突出。基于此,本文就云平台支持下的轨道交通自动售检票系统进行了深入探究,希望为相关工作、为人们了解其原理提供参考。

关键词:云平台;轨道交通;自动售检票系统

AFC(自动售检票)系统,是城市轨道交通票务管理的基础,借助通信网络、数据库管理等现代化技术,让轨道交通售检票环节实现了自动化、智能化运营。在AFC系统的加持下,轨道交通售检票环节由机器取代了大量人工售票、检票等,极大地提高了轨道交通中票务管理效率,也极大地提高了乘客的乘坐体验。随着城市现代化发展的不断推进,云平台、云技术也成为轨道交通自动售检票环节中的重要技术,进一步扩充了AFC系统服务能力。在这一背景下,探究云平台支持下的轨道交通自动售检票系统,便具有了十分重要的现实意义。

一、AFC 系统与云安全机制

(一)传统 AFC 系统存在的问题及云平台带来的优势

过去的 AFC 系统由五个层级的子系统构成:第一层的清分系统,第二层的线路中央计算机系统,第三层的车站级服务器系统,第四层的售检票终端设备以及第五层的票卡。这五个层级共同组成传统 AFC 系统的结构。在实际使用中,人们逐渐发现传统 AFC 系统存在可靠性、可用性不强等问题,例如第三层级容易出现单点故障;随着 AFC 系统规模的不断扩大,运营管理难度不断增大,运营维护成本也不断增加;乘客量的增加,使得数据处于高速增长的状态,对系统的数据处理能力提出了更高的要求。因此,面对社会经济的高速发展,轨道交通 AFC 系统也需要不断升级,以便为城市高速发展提供保障。

在云平台的加持下,自动售票系统的结构,尤其在层级结构 上发生了重大转变,将原来的五层架构转变为三层架构,取代了 传统层级中第一、二层级,相应的工作任务由云平台处理完成, 形成由云计算中心、票务管理终端以及车站终端设备三级共同组 成的新系统,极大地满足了轨道交通运营管理的发展需求。

例如,在功能需求上,基于云平台的 AFC 系统,在原有的功能上,也具备了大数据挖掘、分析、存储以及管理功能。在运营管理中,可以对运营起始业务进行管理、运营日切换、运行模式管理等;在票务管理上,将票卡采购、制作、流通以及回收等都包括在内;在大数据管理上,包含了大数据挖掘、预测以及存储等,也会对系统中的历史数据进行挖掘和管理,进而获取数据中的隐含信息。例如,通过大数据分析客流情况,为轨道交通系统的运营管理决策提供可靠的信息支持。

(二)云安全机制的实现

1. 软件安全机制

系统借助软件自身保护、防止恶意破坏数据、防止误操作等 若干个环节,在系统内部构建起安全机制。以防止恶意破坏为例, 云平台会在系统内部自动存储交易数据,如出进站记录。同时, 当数据量比较大时,平台也会在存储时根据一定的规则划分,最 终存储在不同的区域中;在防止误操作方面,系统中的所有操作 都会检查执行者的口令与权限,便有效避免了大多数的误操作行 为。

2. 网络安全机制

网络安全是确保 AFC 系统安全的前提条件。在云平台支持下,网络安全主要是防范非法信息的进入,杜绝非法窃取信息、篡改信息。在云平台支持下,AFC 系统的网络安全被分为三个安全域:节点安全域、云平台安全域以及边界安全域。借助隔离端口的方式,在不同安全域之间构建防火墙,有效提升了系统的安全性。

3. 数据安全机制

在数据安全机制上,我们需要从数据传输以及数据存储两个方面考虑。在数据传输环节,需要确保数据在传输过程中可以完整、不泄露、不篡改地传递给对方。在这一过程中,数据加密技术成为数据传输中的重要保障。将明文的数据转化为安全性较高的密文,在接收方接受后,通过验证以及数据解密得到原始数据。其中所涉及的密钥管理,需要保证加密与解密的对称且唯一性。在数据存储安全方面,云平台借助数据备份,确保了系统所产生数据的安全性。

二、基于云平台的云支付模式

(一)乘客层面

乘客在使用的过程中可以下载相应的手机软件,在乘车之前 提前购买车票,通过线上自助方式完成购票环节,有效降低现场 人工售票环节的压力,同时也能够节省自身的出行时间。另外, 乘客也可以通过官网平台完成网络购票,同样可以避开人工售票 环节,让出行更为便利。

(二)系统管理层面

在云支付平台的支持下,人们通过现场购票设备完成购票环节的频率明显下降,有效降低了设备后期的维护与管理成本,极大的解放了轨道交通系统中的人力资源,也有效提高了车站售检票的工作效率。此外,借助云支付渠道,制卡成本也得到了有效控制,使系统维护保养工作更加便捷,确保系统的安全性以及稳定性。

(三)城市轨道交通运营层面

基于云平台的云支付模式,在推动城市轨道交通运营方面发挥了极为重要的作用,使管理模式更为多元化、人性化,为乘客提供了更为丰富的出行体验。例如,在现阶段的运营管理中,人们利用云支付中的大数据处理系统开设乘客积分账户,按照乘客云支付中的数据信息为乘客积累乘车积分,并储存至用户账户中。在日后的乘车过程中,乘客可以使用积分直接抵扣票价或参与其他兑换活动。如此一来,轨道交通运营管理工作,可以借助更多样化的管理方式留住客户,促进城市交通轨道的发展。

三、平台支持下的 AFC 建设和运营管理建议

(一)云平台上 AFC 建设的相关建议

1. 明确参与各方职责范围

在结合云平台建设和管理 AFC 系统的过程中,项目以及相关负责人需要就这个过程开展的管理工作,包括综合服务提供企业、

供应企业,明确各方的职业范围,有序推动轨道交通 AFC 系统的建设与投入运营。例如,就建设单位而言,其在项目建设中负责整个项目的技术管理和建设管理,是 AFC 建设运营中的关键环节。所以,在技术管理层面,其需要根据整个项目的规划设计、预设计以及施工图纸设计等,做好后期完善工作以及修改工作,准备满足用户提出的各种需求。在建设管理方面,其需要严格遵守公司的管理系统,提高现场管理水平和工作质量,审查并确认建筑的组织设计。对于整合服务提供者、设备供应单位以及监理单位等,同样需要结合自身的职能明确各方的职责、任务。

2. 加强组织架构及人员配置

组织架构以及人员配置是保证云支付下 AFC 系统建设以及正常运营的重要保障,涉及设备供货商项目、集成服务项目以及监理项目。以集成服务项目组织架构及人员配置为例,其组织架构由项目负责人、规划工程师、质量工程师、文书管理以及专业工程师组成,每个组织架构都有相应的工作职责。例如,项目负责人需要与综合服务供应商签订有关的合作服务合同、协调项目建设单位以及协调招标人资源等,对整个项目的实施与管理起着至关重要的作用。所以,在人员配置上,不可缺少具有领导能力、协调能力的项目管理人才,保证整合服务合同的顺利实现。再比如,质量工程师需要对整个项目的质量管理负责,并落实质量保证体系以及对次供应商质量的管理监督等。总之,加强组织架构以及人员配置,是平台支持下 AFC 建设和运营管理的有效保障措施。

3. 加强进度管理

在建设云平台 AFC 系统的过程中应该制定详细的计划进度表 加大进度管理力度, 在制定的过程中, 轨道交通售检票系统的建 设部门应该考虑组织性因素、费用因素以及技术因素等多方面, 做好应对预案。例如,在组织因素方面,不管是自动售检票系统 的建设环节,还是建成之后的投入使用环节,人都是最重要的因 素,因此对工程队伍的管理将影响整个项目队伍的建设进度。在 组建的过程中应该积极引入综合能力强、熟悉相关技术的人才, 做到合理利用人力资源、合理管理工程人员, 以此节约项目时间 以及项目管理费用。这样,既可以节省时间,又可以节约人工费用, 有效提高项目实施效率。在费用因素方面, 其在整个方案完成的 过程中都发挥着重要作用,如果在建设和运营过程中不注重控制 费用,很容易在资金管理方面出现问题,导致后期出现资金短缺, 而无法推进项目建设与运营的问题。所以,在自动收费系统的初 步设计阶段,应该在设备招标前就制定管理价格执行成本和预算 等,同时为了避免项目费用过高,以及资金短缺等情况,应该严 格控制资金的使用情况,避免在费用方面阻碍 AFC 系统的建设运 营管理工作

4. 系统设备质量保证及相关管理

例如,在设计环节,所有图纸以及产品数据,都应该有明确的质量标准,包括使用的成分以及材料,具体的组装工程等。制造者应该切实负起责任,随时接受修改预案并提供修改后的设计图纸。相应的负责人应该拥有足够的经验和能力,对项目现场地要求有深刻的理解和认识,并为相关工作的开展提供指导意见。在购买材料的过程中,设备整合者应该对所购买的材料,采取有效的管理措施,确认其是否符合要求,是否达到相应的标准。在试运行阶段,设备整合者应该保证自动售检票系统设备与其他系统连接,完成系统试运营测试。在试运营阶段,每个自动检售票系统设备都需要根据具体的规定、方法进行,并记录在案。通过各种方法测试自动系统的控制能力,确定系统的能力是否符合合同的要求事项。

(二) 云平台上 AFC 运营的相关建议

1. 完善 AFC 系统的"软硬"环境

完善 AFC 系统的软硬环境,最终目的是提高系统的风险防范能力,为云平台的推广创造良好环境,也进一步凸显云平台 AFC 系统的优越性。例如,在数据传输的可靠性上,可以使用反病毒软件,以及安全系数更高的 Unix 操作系统。再比如,数据传输过程中使用的密钥系统,应该确保所有设备都达到合法水平。将密钥版本存储在卡中,与 SAM 卡相对应,用以计算认证码。在管理中,不管是轨道交通运输方面的 AFC 系统设备运营者,还是 AFC 系统维护负责人都需要借助运营密码,负责不同权限的管理、维护工作,或者启动、关闭某些功能。

2. 加强员工的培训教育

在轨道交通 AFC 系统建设与运营工作中,人是最主要的因素之一。因此,在基于云平台完善 AFC 系统的过程中,轨道交通运输系统需要加强对员工的培训工作,让员工掌握这一技术含量高、影响力大的新型自动化系统,力求让每一位维护人员以及操作人员都具有较高水平的专业素养。例如,在云平台 AFC 系统的招商引进环节,交通轨道运营部门应该将培训的相关条件纳入考虑范围内,要求系统供应商为轨道交通运输体系中的员工提供专业的培训,并保证员工通过培训获取知识和技能,可以达到有效操作并维护 AFC 系统的水平。此外,在日后的运营管理中,建立一系列的业务培训系统,保证系统投入使用后,工作人员可以独立、安全、有效地完成操作与维护工作。除了专业知识、操作技能方面的培训,也应该加强操作与维修人员的安全意识。通过先培训后上岗的活动,让工作人员深入学习与安全隐患有关的内容,在全体员工队伍中,树立安全第一等思想意识。

3. 构建完善的应急处理机制

完善的应急管理机制,能够帮助轨道交通运营管理的在紧急情况下,做出准确及时的处理,有效规避错误,最大化地减小事故的影响范围。例如,云平台下的 AFC 系统也难免硬件设备故障,以及其他类型级别的风险事故。在这种情况下,可以根据轨道交通事故应急措施管理办法,针对风险来源制定相应的应急计划。例如,当所有人站门均发生故障问题时,乘客带票进入站点后,票证上将没有进入标志,则系统会在沿线站点设置"免进入检查"模式。同时,每个站点需要根据乘客流量情况,在某一出站口设置此模式,以此保证交通轨道的正常运行。为了保证应急预案有效实施,需要采取一些普及和推广措施,组织员工进行风险预案演练,同时加强对轨道交通工作人员的培训,提高其随机应变能力。此外,为了避免故障发生影响城市轨道交通运输能力,工作人员需要定期检查 AFC 系统的风险隐患,排查、消除隐藏的风险问题。

四、结语

综上所述,借助云平台进一步提高轨道交通 AFC 系统的工作能力,是 AFC 系统的发展趋势。在实际应用中其表现出的优势,有效弥补了传统 AFC 系统存在的缺陷,不仅让整个自动化系统更为简洁,还可以为乘客提供多样化乘车服务,提高了城市轨道交通 AFC 系统的标准化水平以及智能化水平。

参考文献:

[1] 王宁. 基于云平台的轨道交通自动售检票系统设计与实现[J]. 无线互联科技, 2023, 20 (11): 70-72.

[2] 聂红红,马殷元.基于混合云平台的城市轨道交通自动售检票系统[J].城市轨道交通研究,2022,25(08):166-169.