

公路隧道排水设计与隧道路基病害防治

干立强

宁夏公路管理中心固原分中心 宁夏固原 756000

摘 要: 我国地域广、地形复杂, 施工人员在建设公路隧道时, 会面临非常复杂的施工环境。以往进行低等级公路建设, 施工人员很少选择公路隧道建设法。但是, 随着我国经济不断发展, 公路交通量逐渐增加, 公路短板问题更为明显。为保证公路能发挥其自身优势, 减少不利影响, 相关施工人员须选择高等级公路建设方式, 公路隧道建设工作在实际施工中越来越重要。本文对公路隧道排水设计与隧道路基病害防治进行探讨。

关键词: 公路隧道; 排水设计; 隧道路基; 病害防治

一、公路隧道排水设计

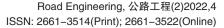
1.设计排水边沟

地下水通常会出现静水压及动水压现象,这样会影响到公路的质量以及破坏公路的稳定性。此外,地下水通常具有一定的腐蚀性,因而会对隧道的结构形成一定危害,而且,由于混凝土大都是多孔的,周围环境存在一些侵蚀物,则会对混凝土内部进行侵染,一旦侵入混凝土内部,则会与混凝土及钢筋发生物理、化学反应,从而破坏了混凝土的结构,使其使用年限降低^[1]。

2.设计复合防水层

目前,作为隧道主要病害之一的渗水问题,已经对 公路隧道的建设产生了较大影响, 一旦出现渗水的情况, 对其进行整治则需要较大费用。随着公路建设的不断发 展,隧道的修建也呈快速增长的态势。因此,为使隧道 防排水工程取得更好的建设效果,在进行施工的过程中, 应将施工手法、防排要求、水文条件、施工费用等因素 进行综合性考虑, 并采取综合整治与因地制宜相结合的 原则,对隧道进行施工建设,从而为行车安全及设备正 常运行提供保证。具体来说,复合防水层的设计是隧道 防水设计中的一种方法,作为衬砌隧道防排水的一种方 式, 在衬砌内面进行排水设施的安装时, 可以采取不开 凿的衬砌方式,这样不仅使施工过程变得简单,同时工 程施工量也较小。但这种方式也存在一定的施工缺陷,包 括疏干围岩包含度较小,同时也较难与地下水露头部分进 行对准, 因此不适合在冬天使用。同时, 作为常用的排水 设施方式, 集水钻孔、纵横及环向排水、泄水孔, 包括复

通讯作者简介: 王立强、男、汉族、1965.07, 宁夏西吉人, 学历: 本科, 研究方向: 公路工程, 邮箱: wLq3556@163.com。


合式防水层的施工,都需要按照国家规定标准执行。

3.设计沉降止水带

对于目前的公路隧道施工来说,由于长期有地下水 渗流或者仰拱破裂, 因此形成泥砂堵塞现象, 导致引水 管出现了回灌现象,进而引发了冒泥、冒水、翻浆等问 题。同时,随着地下水压力与流量的不断增大,会从衬 砌裂缝和施工缝等相对薄弱的环节引发渗漏现象,并且 还容易使衬砌在背后形成空洞, 进而对围岩的特征形成 改变。再者, 地下水中含有的碳酸盐, 容易形成对衬砌 的腐蚀现象。而地下水渗透到路基上后,再加上车辆的 不断碾压, 因而使路面被破坏。具体来说, 在隧道内部 不会有渗水穿透混凝土直接进入的情况,之所以出现隧 道渗水的情况,主要是由于在进行混凝土施工的过程中, 出现了地沉或者裂缝的现象。要想有效规避渗水问题, 首先应对裂缝问题进行处理。较为常见的裂缝处理方法 是在缝隙中放入遇水膨胀的止水条, 在地形沉降的地方 设置止水带。对于止水条和止水带的安装来说,首先应 从厂家定制,尽量避免有接头的情况出现;对于止水条 和止水带的规格来说,需要以隧道的具体情况为依托, 在一切准备就绪后,就可确定安装位置,在防止偏移的 情况下进行牢固安装[2]。

4.利用围岩注浆堵水

在公路隧道施工过程中,地下水会给隧道围岩的强度及稳定性造成一定影响,同时经过一段时间的浸泡也会对隧道的结构形成腐蚀,最重要的是地下水还会通过混凝土薄弱环节或破损部位,包括隧道施工缝、变形缝逐渐渗透到隧道内部,这会严重影响运营环境。具体来说,由于渗水会使隧道内部出现路面湿滑的现象,这样会使汽车轮胎的摩擦阻力变小,从而使行车环境更加危险,使车祸发生率有所提升。因此,应采取围岩注浆堵

水法来解决这一问题,这种情况主要针对在隧道开挖期间,存在大量的股状突水、线状淋水、地下水上涌问题,通过对其灌注浆液的方法,对渗水缝隙进行注浆,从而有效减少围岩向隧道渗水的问题。这种围岩注浆方法更适合超长隧道,在隧道开挖后,本方法可以通过超前或径向方法对围岩进行钻孔注浆。同时,在选料方面应选用价低料源足的水玻璃浆或水泥浆,而且在注浆的时候,应随着透水区的扩大对注浆范围进行扩大,布孔范围应比透水区宽1.2~1.6m。此外,在注浆之前,为有效避免因地下水的过大压力而形成更多透水孔的问题,应在透水区中间部位多打一些泄水孔。在渗水区的情况稳定后,再逐步向四周进行注浆,然后再进行封孔。

二、公路隧道路基病害分析及防治

1.路面压实处理

(1) 病害分析

公路隧道建设的基础性前提是公路路基质量的建设, 一旦出现路基病害较多的情况,则会对公路隧道路基的 使用性能形成直接影响,所以须对路基病害的工作有充 分重视。但是,在公路隧道的使用过程中,依旧较频繁 地出现路基病害问题,由于使用过程中,车辆荷载需要 路基进行反复承载,再加上自然因素导致的路基发生滑 坡、变形等病害,这会造成路面出现质量问题和不稳定 问题。

(2) 防治办法

因此,要想有效对上述问题进行解决,首先就应严格以施工要求为依据,对路基进行施工。第一步,应选择固化好、硬度强、具有较高稳定性的碎石料、砂性土作为路基填料。同时,在施工进程中也应处理填料的稳定性,并严格遵照施工要求,采取合理有效的方式进行施工。选择好填料后,就应对其进行压实处理,在进行压实的过程中,应利用分层压实方式来进行,以确保每一层填料的压实程度,从而使路基可以具有较强的稳定性、密实性及强度,以承受自然灾害的破坏及车辆荷载的破坏。

2. 路基含水量的控制

(1) 病害分析

对公路隧道的路基病害防治来说,路基沉降是形成路基病害的主要原因,路基沉降指的是路基形成的垂直下落现象,这样会导致公路的变形和裂缝的产生。同时,值得注意的是,作为路基最常见的病害,路基的沉降具有不可逆性。路基沉降的原因有很多,既有自然灾害的原因,也有车辆荷载的原因,还有路基自身层面的原因。

路基自身层面的原因主要指的是在施工过程中, 由于填 筑方法的不科学,或者填料本身的质量问题,再者是由 于压实程度不够及路基的排水处理存在问题。因此,也 就形成了路基的强度及抗变形能力都不够完善。在这种 情况下,再加上车辆载荷因素,难免会出现路基位移和 垂直现象。此外,在遇到软土地基的时候,由于这种地 基的抗变形能力、强度和密实度方面,都与公路建设的 施工要求不相符, 所以应采取固化措施对其进行加固。 一旦不做相应的压实或置换填实工作,或者处理软土地 基层的方式不正确,再加上自重及车辆荷载,则会出现 中空塌陷、两侧挤出、沉降等现象, 最终引起路基沉降。 在一部分山区,由于一些陡峭的地基底部会受到雨水侵 蚀, 因此很容易出现斜向或竖向的陡峭边坡, 而一旦坡 脚的加固处理工作没有做好,再加上地壳运动、车辆荷 载、路基自身方面的影响,很容易出现整体性边坡滑塌 问题,具体包括滑坡和溜方问题。溜方即由于施工不当 或者流水冲刷形成的边坡下移现象,再加上长期作用就 会使路基被掏空。

(2) 防治办法

对于上述现象,应在路基施工过程中,首先对软土 基层进行处理,为避免层与层之间出现软夹层,应对路 基的含水量进行控制,这样不仅可以增强路基的稳定性 和强度,同时也提升了路基压实工作质量。对于这一层 面来讲,天然稠度较小而含水量较多的粘质土可以作为 路基填料,同时应在原料中掺加生石灰,这是由于生石 灰具有较强的吸水性, 因此可以对路基进行固化, 也就 是说以此对原材料的性质进行改变。此外, 在原料中掺 入吸水性较强的树脂或膨润土也都是不错的选择。而对 于边坡防护而言,通常采用2种模式来进行,分别是护 坡防护及坡面防护, 护坡防护指的是在边坡上铺砌块石、 片石、预制块等材料,铺砌方法可以选择干砌或浆砌中 的任何一种模式。如软土地基可采取干砌法,铺砌方式 则通常采取浆砌方式;对于坡面防护来说,其主要目的 是对岩石风化剥落及地表水冲刷的问题进行防护, 其中 以菱形或方形的石砌框格进行植被的固面模式, 是较为 常见的对坡面进行保护的一种方式,可以有效防止滑动 及对坡面进行固化[3]。

3. 地面路面地下排水

(1)病害分析

对于公路隧道路基病害来说, 地下水对路基的稳定 性造成较大影响, 在路基病害问题中, 大部分都是受到 地下水的腐蚀形成的。所以, 在具体施工过程中, 应注

重地面、路面、地下的排水工作。通常来讲,进行隧道 排水设计其目的是排出基岩裂隙水和路面水,其中对基 岩裂隙水可以通过中心排水沟的方式排出,同时还可对 电缆沟进行一沟两用,为将路面水引到电缆沟底部排出 洞外,应在沟帮对出水口进行预留^[4]。一般情况下,隧 道内部较少出现路面水发育的情况,大多数因素都是衬 砌开裂形成的渗水现象,或者货车外排的刹车水、洒水 车排出的清洁用水等。因此,在设计环节,应对路面的 便捷和养护性进行考虑。

(2) 防治办法

为有效对路面积水进行排出,可以采取将预制边沟放置在盲沟上的方式,在这种模式下,即便在后期养护的过程中,出现淤积问题也可用洒水车对其进行沿线冲刷,将淤积排出洞外,因此在养护方面具有较强的便捷性。路基盲沟的作用主要在于对基岩裂隙水进行排出,可通过在无仰拱地段增设波纹管或横向盲管的方式,对路基下的地下水进行排出^[5]。

三、结束语

综上所述,对于隧道排水设计与隧道路基病害防治

来说,两者都是确保隧道正常运转的主要屏障。在设计过程中,应对设计工作高度重视,严格做好隧道防排水质量工作,在对排水功能及有效性进行兼顾的同时,也应严格对施工质量进行把控,并在养护的便捷性方面进行注意。并且,在施工过程中,应结合施工实际情况,采取相对应的措施,从而有效杜绝公路隧道路基病害的产生。

参考文献:

[1]漆江, 谭展.浅谈公路隧道排水设计与隧道路基 病害防治[J].价值工程, 2020, 39(4): 76-78.

[2]梁华阳.公路隧道设计与施工的现状及问题探讨 [J].技术与市场, 2018, 25(3): 188, 190.

[3]漆江, 谭展.浅谈公路隧道排水设计与隧道路基 病害防治[J].价值工程, 2020, 39 (04): 76-78.

[4]张威, 胡绕, 刘伍.多频雷达技术在公路隧道路基病害精细探测中的应用研究[J].工程地球物理学报, 2020, 17(01); 107-111.

[5]吴继峰,黎霞.公路隧道排水设计若干问题探讨 [J].城市建筑.2014(04)