

矮塔斜拉桥索塔局部受力分析研究

陈齐风^{1,2} 张晓驰³ 1. 广西北投交通养护科技集团有限公司 广西南宁 530200 2. 广西科技大学 广西柳州 545006 3. 广西交科集团有限公司 广西南宁 530007

摘 要: 矮塔斜拉桥的桥塔索鞍下混凝土受到巨大的索力引发的压力作用,容易使该处的混凝土体容易发生压碎或 开裂,因此埋下结构安全隐患。目前针对索鞍部位的有限元力学分析模型不够精确,难以准确分析该部位的真实受 力情况,为此,提出了一种基于有限元精确模型的索鞍下混凝土受力分析方法,即将索鞍内的分丝管分开精细化 一一建模,并在每层分丝管的表面建立加载面单元,将等效面力分层施加,进而获得精确的分析结果。另外,本文 对塔桥的下塔柱受力特进行了研究,并针对下塔柱受力提出了结构配筋的构造建议。 关键词: 矮塔斜拉桥: 索塔

引言:

矮塔斜拉桥上的索塔采用的是安装索鞍的方式,来 实现拉索体外预应力连续穿过索塔的目的^[1]。在巨大索 力作用下,索鞍容易使得索塔索鞍下部混凝土产生较大 的体外预应力局部压应力,容易造成索鞍下部局部混凝 土压碎现象,以及出现大范围的裂缝,埋下了结构安全 隐患^[2-3]。国内外学者采用不同方法,从不同角度对矮塔 斜拉桥进行了模拟以及分析:

张海文^[4]等基于ANSYS软件内置的接触单元模块来 模拟实现斜拉索与钢管间的接触关系,将分丝管索鞍构 造简化为单束,对矮塔斜拉桥的索塔应力进行了详细分 析,但未考虑外钢管对其的影响作用。谭长建¹⁵¹等通过 改进的分丝管索鞍结构,按空间抛物面形式的面压力模 拟实际索力进行处理,对预应力矮塔斜拉桥主塔鞍座节 段索鞍下混凝土应力分布与分丝管受力进行了分析。张 树清⁶¹等采用三维有限元软件建立矮塔斜拉桥索鞍区有 限元模型,选取整体计算中最不利荷载进行静力分析, 得到了矮桥塔索鞍区混凝土和索体导管应力分布状况。 刘钊^[7]等通过某实际矮塔斜拉桥工程案例,开展了索鞍 区的节段足尺模型试验,采用了双套管索鞍的两种粘结 锚固构造,进行单侧拉索的低周反复加载,测试了不平 衡索力的传递程度; 文章还对索鞍区混凝土连续体的受 力情况进行分析。张永为¹⁸¹基于空间有限元方法,以抛 物线形面压力的形式来模拟实际索力对索鞍的作用,并 对分丝管和双套管两种模拟方式进行了对比分析,取得 了较好的模拟效果。朱军¹⁹通过空间有限元方法对矮塔 斜拉桥的索鞍受力进行了分析,同样采用抛物线形面压 力的形式模拟实际索力,并认为孔道施工偏差对运营阶 段塔的影响实际效果是较好的,相较于以前的平均法、 施加法更为贴近实际真实情况。

综上所述,大量工程人员与科研工作者对矮塔斜拉 桥的模型试验虽然进行了索鞍应力分布规律以及索鞍局 部混凝土应力分布规律的多方面的实体分析,对索鞍局 部混凝土的应力状况有了一定把握,但仍存在以下问题: 建立的索鞍模型多采用近似形状块体,未能精确的描述 钢绞线分别通过多根分丝管的集中作用下,结构的具体 受力情况,故而对索鞍下混凝土的应力分布规律的分析 准确性较低。因此,本文以ANSYS有限元软件通过建立 精确钢索鞍索塔模型,采用平均施加法将索力施加在各 个对应孔道上分析索鞍与索塔混凝土之间的相互作用关 系,为矮塔斜拉桥索塔的设计及施工控制提供参考。

一、工程概况

某矮塔斜拉桥,跨径布置为90+165+90m,见图1所 示,由于索鞍下方的塔桥受力较大,容易发生混凝土桥 塔局部压碎的情况,故本文对该桥的索鞍局部受力区域 开展受力分析。通过精确建立钢索鞍混凝土索塔模型, 分析钢制索鞍与索塔混凝土之间的相互作用关系。另外, 本文也对塔桥的下塔柱受力特进行了研究,并针对下塔 柱受力提出结构配筋的构造建议。

二、索鞍及塔柱有限元分析

钢索鞍采用solid45单元,将每个分丝管用实体单元 进行表示,并将材料特性定义为钢材,忽略分丝管中的

ΛN

空洞,索塔混凝土采用solid45单元。

由于对索鞍分丝管考虑的较精细, 将分丝管的形状 完全用实体单元精确建立,故而模型单元数量较多,完 全建立索塔模型变得较为困难,故而本文所选取的索塔 分析范围为C1、C2拉索(拉索编号为C1-C12,由塔侧 向跨中变化)对应的索塔索鞍部位,钢索鞍内的钢丝不 模拟,钢丝在索鞍上的作用力采用垂直干索鞍分丝管的 法向面力进行模拟,通过索鞍分丝管表面的生成面单元, 并将法向面力施加在该面单元上。见图4所示,面力的 大小可采用式(1)进行计算,C1、C2拉索索鞍对应的 索鞍分丝管表面法向等效力计算结果见表1所示。模型, 采用单元类型见表3所示。

$$q_x = \frac{F_s}{R} \tag{1}$$

式中,F,为索力,R为索鞍半径

表1 C1、C2拉索索鞍对应的索鞍分丝管表面法向等效力

	C1索鞍分丝	C2索鞍分丝		
	管表面	管表面		
索力大小(kN)	4170	4237		
索鞍半径R(m)	3.9	4.0		
等效力大小qx(kN/m)	1069.2	1059.3		
等效面荷载qm(kN/m ²)	1204.1	1193.0		

以上的索塔部位内力采用索塔自重与斜拉索垂直分 力等效模拟,通过面力加载在有限元模型上,具体计算 数值见表2所示。由于划分的单元较多,采用1/4模型进 行计算,在对称面施加对称约束,所建立的有限元模型 见图2-图3所示。

表2 加载在索鞍有限元模型上表面的 拉索垂直等垂直等效力

索	索水平	Si- 0	Sin θ ^{拉索索力} _{kN}	单侧拉索	拉索索力
编号	価角θ	Sin 0		系刀垂直	「垂直分刀」
	194711 0			分力kN	kN
С3	22.7	0.385906	4272	1649	3297
C4	21.4	0.364877	4306	1571	3142
C5	20.4	0.348572	4339	1512	3025
C6	19.5	0.333807	4368	1458	2916
C7	18.8	0.322266	4394	1416	2832
C8	18.2	0.312335	4418	1380	2760
С9	17.7	0.304033	4439	1350	2699
C10	17.2	0.295708	4454	1317	2634
C11	16.8	0.289032	4467	1291	2582
C12	16.4	0.282341	4472	1263	2525

加载在模型上表面的压力荷载还须包括塔的自重, 为0.260N/mm², 拉索的垂向力引起的模型上表面压力荷 载为4.736N/mm², 两者合计为4.996N/mm²。

表3 模型/采用的单元表

部件名称	采用单元类型	弹性模量
钢索鞍	Solid45	2.1×10^{11}
混凝土索塔	Solid45	3.45×10^{10}
加载单元	Shell63(无厚度)	

1.索鞍下部与混凝土接触部位的计算结果见图5-9 所示。

由以上计算结果可知,在索鞍力的作用下,在索鞍 下部出现规则的竖向(沿Y轴方向)压应力分布,压应 力的大小为7.31-11.41MPa; X方向索鞍弧形内侧基本呈 受压状态,在索鞍的圆弧段与直线段交界部位,会出现 的X方向拉应力,最大为1.15MPa。

2. 主塔变截面处应力计算结果分别如图 10 至图 15 所 示。

索塔有限元模型 图2

图3 索鞍及加载板单元

图4 在索鞍加载板单元上进行钢丝等效力加载

5

图5 索鞍部位的混凝土塔柱外表面Y向应力云图

图6 混凝土塔柱索鞍部位切面的Y向应力云图(右侧面)

图8 混凝土塔柱索鞍部位切面的X向应力

图9 靠近端板附近的应力计算结果

图 10 主塔整体 X 轴方向应力云图(交界面)

图12 索塔整体Y方向应力

由图10可见,从索塔整体X方向受力情况看,在索 塔变截面处(上塔柱与下塔柱交界部位)存在有较区域 的沿X轴方向的拉应力,见图11,拉应力幅度在0.41-8.10MPa之间(均值为4.2MPa),特别在弧形段顶部小范 围内呈现较大的受拉状态,最大拉应力为8.10MPa,这 是由于上、下索塔交界部位截面变化,下索塔节段受力 为偏心力导致,由图12可见,下索塔上部的Y方向应力 为内侧大,外侧小,而下索塔下部的Y方向应力为内侧 小,外侧大;此处需要采用预应力张拉或横向钢筋加密 处理,以防治裂纹的扩展,或者在下塔柱离桥面5-6m部 位设置一个受拉构件,也可变截面部位的较大横向拉应 力。

三、结论

1.在局部索鞍力及上部荷载的作用下,在索鞍下部 出现规则的竖向(沿Y轴方向)压应力分布,压应力的 大小为7.31-11.41MPa;X方向索鞍弧形内侧基本呈受压 状态,在索鞍的圆弧段与直线段交界部位,会出现的X 方向拉应力,最大为1.15MPa。符合C50混凝土强度设计 要求。

2.从索塔整体X方向受力情况看,在索塔变截面处 (上塔柱与下塔柱交界部位)存在较大区域的沿X轴方 向的拉应力,拉应力幅度在0.41-8.10MPa之间(均值为 4.2MPa),特别在弧形段顶部小范围内呈现较大的受拉状 态,最大拉应力为8.10MPa,这是由于上、下索塔交界

部位截面变化,下索塔节段受力为偏压构件导致。此处 需要采用预应力张拉或横向钢筋加密处理,以防治裂纹 的扩展。

参考文献:

[1]刘尊稳,陈兴冲,张永亮,等.矮塔斜拉桥分丝管 索鞍区受力特征研究[J].桥梁建设,2018,48(05):69-74.

[2]施智, 覃耀柳.矮塔斜拉桥索塔及索鞍结构仿真 分析[J].西部交通科技, 2019(12): 81-85.

[3] 张少华.分丝管型索鞍锚固区局部应力简化模拟 [J].重庆交通大学学报(自然科学版), 2019, 38(04): 29-34.

[4]张文海,李亚东.矮塔斜拉桥索鞍混凝土局部应

力分析[J].铁道标准计,2009(1):42-44.

[5]谭长建,祝兵,季文洪.矮塔斜拉桥索鞍节段模型试验研究[J].中外公路,2008,28(4):170-172.

[6]张树清, 屈计划.矮塔斜拉桥索鞍静力分析[J].交通科技, 2014, 266 (5): 25-27.

[7]刘钊,孟少平,臧华,等.矮塔斜拉桥索鞍区模型试验及设计探讨[J].东南大学学报,2007,37(2):291-295.

[8] 张永为. 矮塔斜拉桥索鞍受力分析[J]. 中国新技术 新产品, 2009(3): 89.

[9]朱军.矮塔斜拉桥索鞍受力分析[J].山西交通科技, 2006, 181 (4): 44-46.