
计算机系统网络和电信 2025 ( 4 ) 7
ISSN: 2661-3719(Print); 2661-3727(Online)

    28

基于深层神经网络的长大桥梁监测数据异常修复与重构方法

研究
王连发 1,2,4　徐一超 1,2,4　王昆鹏 3　张宇峰 1,2,4　承宇 1,2,4

1. 长大桥梁安全长寿与健康运维全国重点实验室　南京　210019 

2. 苏交科集团股份有限公司　南京　211199 

3. 中交公路长大桥建设国家工程研究中心有限公司　北京　100088

4. 广东粤交科科技有限公司　广州　511462 

摘　要：针对长大桥梁结构健康监测中因传感器故障、环境干扰等导致的数据异常与缺失问题，本研究提出了一种基于深

层神经网络的数据修复与重构方法。该方法融合双向长短期记忆网络（BiLSTM）和条件生成对抗网络（CGAN），充分挖

掘多源异构监测数据的时空关联，实现异常特征的精准捕捉与缺失序列的高精度重构。实验表明，该方法有效提升了数据

质量，平均绝对误差（MAE）降低 21.8%，均方根误差（RMSE）降低 42.7%，模型拟合能力提高 9.1%。
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引言

长大桥梁是交通基础设施的重要组成部件，因此长大

桥梁结构的安全保障显得极为重要。结构健康监测 (SHM) 系

统就是一种针对桥梁长期监测的平台，能够实时采集到桥体

结构的各种振动、应变、温度等多维信息，是对桥梁进行健

康状态评估的重要手段。而基于实际工程的运用，存在着传

感器老化故障、环境噪声干扰、传输丢包及压缩失真等诸多

问题因素导致监测数据出现诸如缺少、跳点、噪声、漂移、

趋势偏离等数据问题。国内外学者将桥梁结构健康监测数据

的异常种类主要分为缺失、噪声、增益、精度下降、漂移、

趋势、次小值、离群值和超量程振荡等 9 类 [1]。工程界前期

开展了 10 余年海量桥梁结构监测数据处理工作，归纳总结

出长大桥梁结构监测主要存在的数据异常包括：数据缺失、

数据跃迁、长周干扰、非一致异点（跳点）、弱噪声干扰、

无法消除的强噪声、其他难以快速识别和消除的数据异常等

7 类 [2]。这些分离基本涵盖了目前结构监测系统数据异常的

有所形式。

本文针对以上核心问题，开展基于深层神经网络的

数据修复与重构方法研究。通过融合双向长短期记忆网络

（BiLSTM）和条件生成对抗网络（CGAN），充分挖掘多源

异构监测数据的时空关联，实现异常特征的精准捕捉与缺失

序列的高精度重构。

1 数据异常问题

1.1 监测数据异常类型

桥梁健康监测数据异常主要表现为以下几种类型：

数据缺失：因为传感器异常或者数据传输问题等导致

部分或者全部数据丢失，根据其缺失模式的不同可以将其分

为随机缺失、连续缺失及整个通道缺失等类型。

(1) 跳点异常：数据中出现瞬时尖峰或者脉冲，其原因

主要是外部电磁干扰和采集系统瞬时故障所致。

(2) 噪声异常：由于存在着环境干扰、测量误差以及电

子设备热噪声等因素，所以数据中必然存在一定的随机波动。

(3) 信号漂移：由于传感器基准值随时间产生一种趋势

性的偏移，一般情况下，这是由传感器老化和温度变化所引

起的。

(4) 趋势异常：数据长时间处于和正常情况不一样的模

式下运行，有可能是结构受损、或者环境发生了改变。

表 1：桥梁监测数据异常类型及特征

异常类型 主要特征 产生原因 处理难度

数据缺失 数据点或段完全丢失 传感器故障、传输中断 中等

跳点异常 瞬时尖峰脉冲 电磁干扰、瞬时故障 低

噪声异常 随机波动 环境干扰、测量误差 低 - 中等

信号漂移 基准值缓慢变化 传感器老化、温度变化 高

趋势异常 长期趋势变化 结构损伤、环境变化 极高

1.2 传统处理方法的局限性

传统的数据异常处理方法主要有通过可视化方式查看、
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使用数据统计学检验及通过模型分析等方法找出异常值，并

用删除或者替换等方法对其进行处理，但这些传统方法有明

显的局限性 [3,4]。更重要的是，目前很多方法忽略了桥梁

结构本身所具备的力学特性，并没有把结构物理先验知识应

用到桥梁的状态评价当中去，所以修复后的结果难免存在脱

离结构力学实际的可能，会影响到后期状态评估的正确性。

2 方法理论

本研究提出的基于深层神经网络的数据修复与重构方

法整体框架主要包括数据预处理、特征提取、异常诊断与数

据修复四个核心模块。

2.1 数据预处理与特征提取

数据预处理能够保证数据分析结果的准确性。首先要

对原始监测数据进行清洗，然后运用基于统计分布的方法找

寻并剔除明显的异常值；对于缺失数据，在判断其缺失比例

之后采取不同的措施，当缺失比例不大时，利用均值、中位

数或者众数填补空白；若是缺失比例大，则根据数据自身时

间的相关性，采用插值法填补或者采用某一相近时期的数据

来修补。

考虑到不同传感器采集的数据量纲和数值范围差异较

大，直接分析会影响结果准确性，需对数据进行归一化处理。

采用离差标准化方法将数据映射到 [0,1] 区间，公式如下：

其中，xmin 和 xmax 分别为数据的最小值和最大值。

按照以上要求，在每分钟内获得归一化数据时生成 11

维特征向量，分别为：均值、中值、标准差、均方根、幅值、

差值、百分二十位数、百分八十位数、最大值与百分八十位

数之比、均值与幅度之比以及均值与百分八十位数之比。该

特征是从 40 个统计特征指标库中经过多轮对比筛选后所得

出的较为敏感的特征点，对模型而言是较为重要的部分，能

在一定程度上提高模型的准确度，减少训练成本 [5]。

2.2 神经网络模型设计

2.2.1 双向长短期记忆网络（BiLSTM）异常诊断

为了解决监测数据异常诊断的问题，采用包含三个双

向 LSTM 层、一层全连接层和一层 softmax 层的 BiLSTM 模型。

其中，基于 BiLSTM 模型可以同时学习时序数据的前向和后

向信息的特点，来获取监测数据中蕴含的时序特征。

2.2.2 条件生成对抗网络（CGAN）数据修复

为了解决异常数据的修复问题，利用 CGAN 进行数据

重建。CGAN 是利用添加了条件变量，使生成器、判别器得

以通过数据指导生成过程，完成多传感器间非线性关系学习

的数据重建过程。

生成器 G 试图学习真实数据分布，以随机噪声 z 和条

件向量 c 为输入，生成修复数据 G(z|c)；判别器 D 则尝试

区分真实数据 x 和生成数据 G(z|c)，同时考虑条件向量 c。

CGAN 的价值函数可表示为：

经过对抗训练，生成器能够学习产生难以区分的真实

数据分布，实现异常数据的精修复。

2.2.3 深度神经辐射场精细化重建

为了满足桥梁故障检测以及精细化重建的需求，运用

深度神经辐射场（NeRF），仅依靠少量图片即可还原出高

分辨率、高频细节的 3D 场景，适用于复现复杂环境中多角

度几何细节；以合成的 3D 高分辨率深度场与桥梁标准深度

图为参照，并进行对比，可精准地检测到微小损伤部位 [6]。

2.3 多源时空数据融合

为了充分发挥监测数据的时空特性优势，提出一种多

源时空数据融合方法：以卷积神经网络模块抽取数据时序局

部特征，利用通道注意力模块动态量测点间空间相关性，使

用双向长短期记忆模块结合融合后的特征开展序列分析建

模。此多源融合方法同时考虑了监测数据的时间依存性和空

间相关性，充分发挥了多源传感器数据之间的内在联系性，

提高了数据修复重构的精度；可以根据不同桥梁监测指标的

不同特点自适应调整融合权重，达到个性化的目的 [7]。

3 实验验证与结果分析

3.1 实验设置与评价指标

为验证所提出方法的有效性，分别进行了数值模拟和

实桥监测数据实验。采用某大跨度斜拉桥的 GPS 监测数据

作为实验数据集，该数据集包含 8 个传感器采集的结构响应

数据。

采用以下评价指标量化方法性能：

平均绝对误差（MAE）：衡量修复数据与真实数据之

间的平均绝对差异
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均方根误差（RMSE）：衡量修复数据与真实数据之间

的平均平方根差异

拟合能力（R^2）：衡量修复数据对真实数据的解释程度

3.2 结果分析

对数值模拟实验中人为造成一定的数值缺损或错误值

的比例不同，采用传统方法与本文所提的深度神经网络方法

进行数据修复、重构，得到的结果见表 2。

表 2：不同数据修复方法的性能比较

数据缺失比例 方法 MAE RMSE R^2 计算时间 (s)

10% 线性插值 0.124 0.156 0.872 0.5

10% ARIMA 0.098 0.132 0.901 2.3

10% 本文方法 0.067 0.089 0.958 3.8

30% 线性插值 0.253 0.312 0.723 0.6

30% ARIMA 0.201 0.254 0.785 2.5

30% 本文方法 0.112 0.145 0.912 4.2

50% 线性插值 0.412 0.498 0.532 0.6

50% ARIMA 0.325 0.401 0.643 2.7

50% 本文方法 0.186 0.237 0.862 4.5

从表中可以看出，在各种方法的性能都随数据缺失比例

的增大而不断减小的情况下，本文采用的深度神经网络法在

整个过程中的效果都要好于其他的方法。其中，在数据缺失

比例达到 50% 的时候，本文方法相较于传统方法，MAE、

RMSE 与拟合能力分别减少 42.7%、40.9% 与 34.0%，同时

由于增加了数据的量，有效增强了学习的训练量；但是它的

计算时间相比传统方法会稍多一点，但是仍能符合工程实践

中对计算效率的要求。

4 应用前景与挑战

基于深层神经网络的桥梁监测数据异常修复与重构方

法在实际工程中具有广阔的应用前景：可以在当前桥粱健康

监测系统内集成应用，在采集、处理和分析阶段做好相关数

据的校验与修正工作，针对结构的状态信息实现高效合理的

数据采集、在线判断及快速更新。优化后的质量监测数据可

用于精准的结构状态诊断（损伤识别），安全预警和剩余寿

命预测等工作，有利于科学化地指导桥梁养护管理 [8]。

然而，这种方法还在使用上有许多困难之处。

计算资源需求：本文网络模型训练和推理所需要大量

的计算资源对于嵌入式设备而言很难做到即时的、稳定的运

行。后续可以采取模型轻量化、知识蒸馏等方式减小模型的

计算量来解决该问题。

模型可解释性：深度学习模型是黑箱模型，难以理解

其内部机制，也不易被人所信任，后续工作中应该加强引入

可解释人工智能 (XAI) 来解释模型内部的机理 [9]。

5 结论

本文针对长大桥梁结构健康监测系统中常见的数据缺

失、跳点、噪声、漂移及趋势异常等问题，构建了一套完整

的深度学习方法体系。该方法融合了双向长短期记忆网络

（BiLSTM）与条件生成对抗网络（CGAN），能够有效挖掘

监测数据中的时空依赖关系，实现对异常数据的精准识别与

高质量重构。
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