首页出版说明中文期刊中文图书环宇英文官网付款页面

元启发优化算法综述

王 天宝
天津商业大学宝德学院 300384

摘要


元启发优化算法受自然现象和生物行为启发,适用于解决复杂优化问题。根据算法的启发源分为基于群体智能、进化、生物行为与人类智能、物理原理以及数学方法五类,并强调了其平衡、记忆、自适应和并行寻优的特点。介绍了近两年提出的创新算法,探讨了通过混沌映射和随机扰动等策略来提升算法性能,展望了算法理论研究、通用性和适应性、效率提升以及跨学科融合等未来发展方向。

关键词


元启发;群体优化;技能优化算法;混沌映射;高斯变异

全文:

PDF


参考


[1]Mohammad Dehghani,Zeinab Montazeri,Gaurav Dhiman, et al. A Spring Search Algorithm Applied to Engineering

Optimization Problems[J]. Applied Sciences, 2020, 10: 6173.

[2]Hadi Givi,Marie Hubalovska. Skill Optimization Algorithm: A New Human-Based Metaheuristic Technique[J]. Computers, Materials & Continua, 2023, 74: 179-202.

[3]Mahdi Azizi,Uwe Aickelin,Hadi A. Khorshidi, et al. Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization[J]. Scientific Reports, 2023, 13.

[4]Colorni,Alberto,Dorigo, et al. Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life, 1991: 134-142.

[5]Kennedy,James,Eberhart, et al. Particle swarm optimization[C]//Proceedings of Icnn'95-international Conference on Neural Networks, 1995: 1942-1948.

[6]Yang,Xin-She. A new metaheuristic bat-inspired algorithm[Z]: Springer, 2010: 65-74.

[7]Heidari,Ali Asghar,Mirjalili, et al. Harris hawks optimization: Algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.

[8]Holland J.-H. Genetic Algorithms[Z], 1992.

[9]RAINER STORN,mchp.siemens.de)KENNETH PRICE. Differential Evolution – A Simple and Effcient Heuristic for Global Optimization over Continuous Spaces[Z]: 1-19.

[10]Tang,Deyu,Dong, et al. ITGO: Invasive tumor growth optimization algorithm[J]. Applied Soft Computing, 2015, 36: 670-698.

[11]Khalid,Asmaa M,Hosny, et al. COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle[J]. Neural Computing and Applications, 2022,

34(24): 22465-22492.

[12]Van Laarhoven,Peter JM,Aarts, et al. Simulated Annealing[M]: Springer, 1987.

[13]Osman K. Erol,Ibrahim Eksin. A new optimization method: Big Bang – Big Crunch[J]. Advances in Engineering Software, 2006, 37: 106-111.

[14]Mohammad Dehghani,Haidar Samet. Momentum search algorithm: a new meta-heuristic optimization algorithm inspired by momentum conservation law[J]. Sn Applied Sciences, 2020, 2.

[15]Eskandar,Hadi,Sadollah, et al. Water cycle algorithm--A novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Computers & Structures, 2012, 110: 151-166.

[16]Rashedi,Esmat,Nezamabadi-Pour, et al. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248.

[17]Hamid Salimi. Stochastic Fractal Search: A powerful metaheuristic algorithm[J]. Knowledge-based Systems, 2015, 75: 1-18.

[18]Hansen,Pierre,Mladenovi{'c}, et al. Variable neighborhood search: Principles and applications[J]. European Journal of Operational Research, 2001, 130(3): 449-467.

[19]Iruthayarajan,M Willjuice,Baskar, et al. Covariance matrix adaptation evolution strategy based design of centralized PID controller[J]. Expert Systems with Applications, 2010, 37(8):

5775-5781.

[20]Ahmadi,Seyed-Alireza. Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems[J]. Neural Computing and Applications,

2017, 28(Suppl 1): 233-244.

[21]Rao,R Venkata,Savsani, et al. Teaching--learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer-aided Design, 2011, 43(3): 303-315.

[22]Rao,R Venkata,Patel, et al. An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems[J]. Scientia Iranica, 2013, 机械工程 (3)2024,6 ISSN: 2661-3530(Print); 2661-3549(Online) 100 20(3): 710-720.

[23]Ghasemi,Mojtaba,Rahimnejad, et al. A new metaphor-less simple algorithm based on Rao algorithms: a Fully Informed Search Algorithm (FISA)[J]. Peerj Computer Science, 2023, 9.

[24]Trojovsk{`y},Pavel. A new human-based metaheuristic algorithm for solving optimization problems based on preschool education[J]. Scientific Reports, 2023, 13(1).

[25]Abdel-Basset,Mohamed,El-Shahat, et al. Young ’ s double-slit experiment optimizer: A novel metaheuristic optimization algorithm for global and constraint optimization problems[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403.

[26]Ghasemi,Mojtaba,Zare, et al. Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419.

[27]Cymerys,Karol,Oszust, et al. Attraction--Repulsion Optimization Algorithm for Global Optimization Problems[J]. Swarm and Evolutionary Computation, 2024, 84.

[28]Yuansheng Gao,Jiahui Zhang,Yulin Wang, et al. Love Evolution Algorithm: a stimulus– value– role theory-inspired evolutionary algorithm for global optimization[J]. The Journal of Supercomputing, 2024.

[29]Amiri,Mohammad Hussein,Mehrabi Hashjin, et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm[J]. Scientific Reports, 2024, 14(1).

[30]Sowmya,Ravichandran,Premkumar, et al. Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems[J]. Engineering Applications of Artificial Intelligence, 2024, 128.

[31]Hamad,Rebwar Khalid,Rashid, et al. GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond[J]. Evolving Systems, 2024: 1-26.

[32]Zareian,Lida,Rahebi, et al. Bitterling fish optimization (BFO) algorithm[J]. Multimedia Tools and Applications, 2024: 1-34.

[33]李梓成,代永强. 一种改进的鲸鱼优化算法[J]. 计算机技术与发展, 2023, 33(02): 173-180.

[34]Min Wang,Jie-Sheng Wang,Xu-Dong Li, et al. Harris Hawk Optimization Algorithm Based on Cauchy Distribution Inverse Cumulative Function and Tangent Flight Operator[J]. Applied Intelligence, 2022, 52: 10999-11026.




DOI: http://dx.doi.org/10.12361/2661-3549-06-03-158889

Refbacks

  • 当前没有refback。