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Abstract：We provide a different proof for the following result in [5]: if a smooth expandingcircleendomorphismisacriticalpointoftheSRBentropyfunc- 

tional,thenitmustbesmoothlyconjugatetothelinearendomorphism. 

 

1Introduction 

Amongst all the invariant measures for differentiable dynamical 

systems, the Sinai-Ruelle-Bowen (SRB) measure is a key tool to 

understand the natural laws behind physical models. There has been 

growing interests on the study of SRB measures under perturbations, in 

terms of properties such as stochastic stability, linear response, Lyapunov 

exponents and entropy. 

We are particularly interested in the Kolmogorov-Sinai entropy of 

the SRB measures, which defines a nonlinear functional in some 

topological class of dy- namical systems. Motivated by the 

Gallavotti-Cohen Chaotic Hypothesis, a conjecture was proposed: In 

typical class of chaotic systems, the SRB entropy functional does not have 

nontrivial local maximum. In other words, typically a local maximum of 

the SRB entropy functional must be a global maximum. 

Some positive results have been achieved in low dimensional 

systems,  such  as the class of smooth circle expanding endomorphisms 

by Jiang [5] and Markov transformations on a closed interval by Jiang and 

Lopez [6]). There is also a  recent affirmative result by Saghin, 

Valenzuela-Henriquez, and Vasquez [10] in the category of C3 family of 

transitive Anosov maps on two torus. 

In this note, we shall restrict ourselves in the class of smooth 

expanding circle endomorphisms that had been considered by Jiang in [5], 

in which he prove the 

conjecture using the Lagrange multiplier theorem in Banach spaces 

to obtain necessary conditions for the critical values of the entropy. We 

shall provide here a quite different proof by using a special perturbation, 

together with the analytic formula of linear response. Our proof involves 

with an explicit construction for the perturbation, which may be 

generalized to higher dimensional cases in the future work. 

The paper is organized as follows: firstly, we introduce all necessary 

notations and state our main results in Section 2; next, we explain the 

special perturbation and the linear response formula in Section 3; finally, 

we present the proof of our main theorem in Section 4. 

2Notations and MainResults 

In this note, we consider the space of smooth expanding 

endomorphisms on the unit circle, and study the critical points of the SRB 

entropy functional in this space. We first introduce the following notations. 

(1)Let T be the unit circle. The universal covering space of T is the 

real line R, with the natural projection Π: R→ T given by Π(x) = exp(i2

πx). In this way, we may regard T as the unit interval [0, 1] with 0 ∼ 1. 

(2)Let k ≥ 2 be a fixed integer, and let F be the space of C3 

endomorphisms of T with degree k. Since any endomorphism f ∈ F can 

be lifted to a function on the covering space R, we shall identify f with its 

lifting.  That is, by abusing notations if there are no confusions, we may 

write 

 

(3)TomakeaperturbationinthespaceF,weintroducethespace 

 

which is the space of C3  period one function on R.  It is easy to 

verify that  F + G ⊆ F and G ◦ F ⊆ G, that is, f + g ∈ F and g ◦ f ∈ 

G for any f ∈ F and g ∈ G. 

(4)Let E be the subspace of F such that every f ∈ E is uniformly 

expanding, i.e., minx∈R f ′(x) > 1. It is clear that E is an open, path 

connected subset of F, while an endomorphism in ∂E need not be uniformly 

expanding. 

Next we recall some definitions and results from smooth ergodic 

theory, for which the readers may consult the references [1, 3, 9, 12]. 

For any f ∈ F, if an f -invariant probability measure µ is absolutely 

con-tinuous with respect to the Lebesgue measure on T, then it is called a 

Sinai- Ruelle-Bowen (SRB) measure of f . It is well known that every 

expanding circle endomorphism f ∈ E admits a unique SRB measure µf 

on T, such that the density function ρf (x) = dµf (x)/dx is C2 smooth. 

Given any f  ∈ E , we denote H(f ) := hµf (f ) the Kolmogorov-Sinai 

entropy of the SRB measure µf , which we shall call the SRB entropy of f . 

The following properties of the SRB entropy functional H : E → R are 

well known: 

(1)H(·) is analytic on E (see e.g. [8]); 

(2)the range of H(·) is (0, log k]. Indeed, the maximum is due to the 

variational principle and the fact that the topological entropy is log k, and 
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the infimum being zero were established in [4, 7]; 

(3)by the Roklin-Pesin entropy formula, we have 

(2.1) 

We say that f ∈ E is a critical point of the SRB entropy functional 

H(·), if for any C
1  path {ft}t∈(−ϵ,ϵ)  with f0 = f  in the space E , where 

ϵ > 0. 

 

Note that any f ∈ E is topologically conjugate to the linear circle 

endomor- phism Ek(x) = kx (mod 1). Our main theorem establishes the 

smooth rigidity related to the SRB entropy functional, which is stated as 

follows. 

Theorem 2.1. If f ∈ E is a critical point of the entropy function 

H(·), then f is C
3 conjugate to the linear endomorphism Ek. 

The following corollary is  immediate. 

Corollary  2.2.  If the SRB entropy of f  ∈ E equals to log k, 

then f is C3 

conjugate to the linear endomorphism Ek. 

3SomePreliminaries 

3.1A  SpecialPerturbation 

It was pointed out by Shub-Sullivan [11] that any f  ∈ E is C3  

conjugate to  an f ∈ E which preserves the Lebesgue measure (see also 

the Moser’s trick explained in [4–6]).  More precisely, we recall that 

ρf  is the density of the 

unique SRB measure of f , which can be viewed as a C2 period one 

function on R. We define f = h ◦ f ◦ h− 1, where h is given by 

 

It is not hard to verify that h is a C
3 diffeomorphism on T with 

degree one, i.e., 

h(x + 1) = h(x) + 1 for any x ∈ R, and thus f  also belongs to E . 

For any f ∈ E and any g ∈ G, we first make an additive 

perturbation on f by g, that is,for some sufficiently small ϵ > 0. We then 

apply a smooth conjugation on ft by h, that is, ft = h­1 ◦ ft ◦ h. It is 

clear that both ft and ft are C1 paths in E . 

   (3.1) 

Let µft and µft be the SRB measures of ft and ft respectively. We 

have that h∗(µft ) = µft   due to the uniqueness of SRB measures for 

both ft  and ft, as well as the fact that h is absolutely continuous with 

respect to the Lebesgue measure on T.  Therefore, by (2.1) we obtain 

that 

(3.2) 

where we denote ρt  the density of the SRB measure of f-t.  Note 

that ρ0 = ρf- ≡ 1. 

3.2Linear ResponseFormula 

To compute the derivative of the SRB entropy functional along a 

particular path, we shall apply the linear response formula. 

More precisely, let ft be the path given by (3.1), and let ρt be the SRB 

density of ft. The mapping t 1→ ρt is differentiable at t = 0, and the 

derivative at t = 0 is given by 

(3.3) 

where L is transfer operator associated with f-. Here L is defined by 

 

Equivalently, the transfer operator L can be characterized by the 

following du- ality relation: 

(3.4) 

For more details on transfer operators, see the references [1, 12]. 

The linear response formula given by (3.3) is well known, but is 

usually presented in an integral form (see e.g. the expository survey [2]). It 

is worth 

pointing out that the series in (3.3) converges absolutely since the 

transfer op- erator L is uniformly contracting on the space 

 

and it is clear that g′ ∈ G0  for any g ∈ G. 

4Proof of Theorem2.1 

Suppose now f ∈ E is a critical point of the SRB entropy functional. 

For any g ∈ G, we let ft be the C1 path constructed in (3.1). A direct 

calculation by taking derivative of (3.2) yields that 

(4.1) 

where ξ is given by (3.3). Note that the last term vanishes because ρ0 

≡ 1 and f preserves the Lebesgue measure so that 

 

We  now choose a particular g ∈ G  as follows.  We  define 

  (4.2) 

Since ψ(x)dx = 0, it is easy to see that the map 
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belongs to G. Applying the duality relation in (3.4), we obtain from 

(4.1) that 

 

Here σ2
ψstands for the variance given by the Green-Kubo formula: 

 

where is always non-negative.  Therefore, we must have implies 

that ψ ≡ 0. 

ψ2(x)dx = 0, which 

By the definition of ψ in (4.2), we conclude that log f ′ and thus f ′ 

must be constant. On the other hand, since f ∈ E is of degree k, we have 

 

Then f ′(x) ≡ k and thus f (x) = kx + α for some α ∈ R. Define a 

circle rotation by β(x) := x + α/(k ­ 1) (mod 1), then we get β ◦ f ◦ 

β
−1 = Ek, that is, f is C

3 conjugate to Ek. Hence f = h ◦ f ◦ h
−1 is also 

C3 conjugate to Ek. 

The proof of Theorem 2.1 is complete. 
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