

新质生产力驱动下 AI 赋能高校信息人才学习能力的路径探索

梁 妍 于海霞

黑龙江财经学院 黑龙江哈尔滨 150025

摘 要:伴随新质生产力的驱动,人工智能(AI)正成为对高校信息人才学习能力赋能的重要工具,文章一开始就探讨了AI赋能的理论依据,涉及智能技术在学习领域中的应用及其对教育模式带来变革的潜力,探究了AI赋能高校信息人才学习能力碰到的挑战,如技术应用与教育理念的结合程度、个性化学习需求跟AI系统的适配状态、数据安全与隐私的维护要点,另外存在教师角色转变与能力增强等情形,提出搭建智能化学习环境、改进个性化学习体验、提高协作与创新能力、完备评估与反馈体系等路径策略,期望能为高校信息人才培育提供参考范例。

关键词:新质生产力;人工智能;高校信息人才

引言

伴随新质生产力的迅猛发展,人工智能(AI)正迅猛变革着各个领域,教育领域也在变革之列,身为未来科技创新主力军的高校信息人才,提高其学习能力的重要性十分显著,AI技术应用为高校信息专业人才学习创造新可能,诸如制定个性化学习路径、搭建智能化学习环境以及提高协作创新水平。于 AI 赋能高校信息人才学习能力的过程里,也存在诸多挑战,就如技术应用跟教育理念的整合事宜、个性化学习需求和 AI 系统的适配状况、数据安全与隐私的守护,另外涉及教师角色的转变及能力的增进等,研究 AI 赋能高校信息人才学习能力的有效路径,有不容忽视的现实意义。

1 新质生产力驱动下 AI 赋能的理论基础

新质生产力驱动下,AI赋能把复杂系统理论作为根基,借助多模态深度学习架构剖析异构数据的非线性关联,凭借强化学习达成资源配置模型的动态优化,依托量子计算的算力构建起跨层级的因果推理网络,其理论的创新性突破呈现于以贝叶斯网络为基础的不确定性知识表达框架,借助神经符号系统达成语义鸿沟的弥合,以联邦学习机制保障分布式智能体协同期间的隐私计算,最终形成带有涌现效应的认知增强样式,向物理世界与数字孪生体的双向因果干预提供数学建模工具,带动生产力从要素驱动过渡到智能决策阶段。

2 新质生产力驱动下 AI 赋能高校信息人才学习能力面 临的挑战

2.1 技术应用与教育理念的整合挑战

受新质生产力的驱动,AI 技术和教育理念的深度结合面临多种技术壁垒及认知矛盾,高校传统的课程体系聚焦于知识传授,与AI 激发的能力导向教育理念存在结构方面的矛盾,难以契合生成式 AI、联邦学习等前沿技术教学转化的要求^[1]。自然语言处理当中Transformer架构的应用实践,应把复杂算法拆分成模块化的教学内容,可现有的教学模式没有做好技术底层逻辑与实践场景的融合设计,于教育数字化的转型阶段,AI工具和智慧教学平台的适配性欠佳,异构系统的数据接口标准迄今尚未统一,造成知识图谱构建、智能评测等功能无法实现无缝联通。教育者对 AI 赋能教育认知的差异十分显著,部分教师把 AI 看作是简单的教学辅助之物,未体悟其在重塑教育生态当中的核心功用,使得 AI 技术在教学设计、课堂互动、效果评估等阶段的应用只做了表面文章,无法切实实现"技术—理念—实践"三位一体的深度结合。

2.2 个性化学习需求与 AI 系统的适配问题

AI 系统于满足高校信息人才个性化学习需求之际,受到技术瓶颈与数据局限的双重掣肘,目前主流的自适应学习系统多借助协同过滤算法来实现,较难精准掌握学生在复杂知识领域的动态认知状态,在人工智能算法设计课程里,学生在强化学习、深度学习掌握程度上差异十分显著,但当前的 AI 系统无法切实区分知识盲区与学习偏好,致使

推荐内容呈现高度同质化。学生认知模型动态更新机制存在着滞后现象,传统凭借历史数据的静态建模做法,难以跟上信息学科知识快速迭代的步伐,在技术实现这一维度,多模态学习分析技术尚未达到成熟水平,难以对学生的行为、情感和认知数据进行全面整合,造成个性化学习路径规划精准性欠缺。

2.3 数据安全与隐私保护的伦理挑战

于 AI 赋能高校信息人才培育进程里,新型技术风险及 伦理困境摆在数据安全与隐私保护的路上, 在智能教学的 情境当中, 学生学习行为、作业答案、实验操作等多源信 息被大规模采集,全生命周期中数据管理存在安全上的隐 患,于联邦学习框架范畴内,开展跨校数据协同训练可增 强 AI 模型性能,可若数据加密传输和访问控制机制存在了 缺漏,极易引发敏感信息的外泄[2]。AI 算法里的偏见状况 加剧了数据伦理的相关风险, 以历史学习数据为基础训练 出的智能评价模型,也许会由于数据样本偏差造成评估结 果不公平, 引发学生学习标签的僵化, 实际应用时, 匿名 化处理技术无法全然消除数据的可识别性, 差分隐私算法 虽在一定程度上可护住数据隐私, 但会引起数据可用性降 低,影响 AI 模型训练的实际效果,面临技术发展跟伦理规 范的动态角力, 高校急需创建涉及数据采集、存储、应用、 销毁全流程的安全治理机制, 权衡 AI 赋能跟隐私保护的双 重需求。

2.4 教师角色转变与能力提升的挑战

因 AI 技术的深度应用, 高校教师角色从知识传授者朝着学习引导者转变, 该过程里明显呈现出显著的能力差距与适应困境, 在技术范畴而言, 教师应掌握机器学习基础、智能教学工具开发这类新型技能, 但多数教师未进行过系统的 AI 技术培训, 难以对智能备课系统、课堂行为分析工具等教学平台实现高效掌控。处在面对 AI 生成个性化学习报告的情境中, 教师因数据分析能力方面欠缺, 难以精准解析数据所蕴含的学生学习特性, 引发教学干预宣告失败, 就教育理念这一层面而言, 教师应当重新锚定自身角色, 从传统课堂的掌控者转型为学习生态的规划者, 但长久累积的教学惯性妨碍了这一转变进程, 有部分教师对 AI 辅助教学抱持抵触情绪, 顾虑技术会替代自身的职责。AI 时代下的教师能力评价体系未完善, 目前评价标准依旧以科研成果与传统教学指标为主要构成, 未将 AI 教学设计能力、

智能教育资源开发能力等纳入考核范畴,引发教师提升数字化教学能力的内在动力欠缺,掣肘了AI赋能教育的实际成效发挥。

3 新质生产力驱动下 AI 赋能高校信息人才学习能力的 路径策略

3.1 构建智能化学习环境

构建智能化学习环境得凭借边缘计算与云计算协同架构,打造能达成全域感知的智慧教育生态格局,采用部署物联网传感器组合,实时采获教室、实验室、图书馆等场景里学习行为及环境的数据,结合时空数据分析算法去构建动态学习场景模型,依仗数字孪生技术,对物理范畴的学习空间做 1:1 的数字化映照,做到虚拟与现实教学场景的顺滑切换,如在网络安全攻防的实验里,学生借助数字孪生平台模拟真实的攻击情形,增进实践操作水平^[3]。用知识图谱技术把分散的教学资源整合起来,设立语义互联互通的智能资源库,对基于自然语言处理的智能检索与推荐予以支持,在系统集成这一层面,依靠微服务架构达成各类教学平台解耦与连通,凭借标准化 API 接口达成智能考勤、在线测试、互动答疑等功能模块的灵活调用,最终形成可实现自感知、自优化、自决策的智能化学习环境,向信息人才赋予沉浸式、交互式的学习体验。

3.2 优化个性化学习体验

若要优化个性化学习体验,需打造多模态动态认知模型,采用强化学习算法以实现学习路径的智能优化,借助眼动追踪与脑电波监测等技术采集学生生理数据,把学习行为数据跟作业成果数据联合起来,基于 Transformer 架构进行多模态特征的聚合,精细描绘学生的知识掌握程度、学习方式与认知面貌。采用动态贝叶斯网络搭建起学生认知发展预测模型,实时预判学习进程及潜在困境,事前推送定制的学习资源,借助生成式 AI 可为每名学生定制专属的学习路径,就像针对算法设计较为薄弱的学生,自动规划浅入深出的编程挑战内容,同时借助代码自动评审系统给予即时反馈,采用元学习机制,促使 AI 系统在不同学生的学习经历中不断归纳优化策略,打造个性化学习策略数据仓,实现"千差万别"的精准学习支撑,切实契合信息人才多样化的学习诉求。

3.3 增强协作与创新能力

增强协作与创新能力, 需借助分布式 AI 协同平台之力,

组建虚实契合的创新实践共同体,凭借区块链技术搭建去中心化的合作平台,依靠智能合约实现任务分派、成果认定与激励机制的自动管理,保障跨校及跨学科团队协作时的公平公正与信息公开。在协同开展进程里,采用联邦学习框架达成多方数据安全共享及联合模型构建,以大数据分析项目为例,各个高校的学生团队可在不把本地数据泄露出去的前提下,合作训练模型进而提升分析的精度,引入数字孪生协同的沙盘,助力团队成员于虚拟环境开展方案设计、模拟推演及迭代优化,凭借增强现实技术完成虚拟成果与现实场景的交互查核。

3.4 完善评估与反馈机制

若完善评估及反馈机制,需构建以因果推断为基础的智能评价体系,达成学习效果的精准判析与动态介入,利用因果发现算法探究学习行为跟学习成果间的因果联系,突破传统相关性分析的既有约束,好比借助反事实推理评估不同教学策略对学生编程能力增进的实际影响。依靠多智能体强化学习构建动态评估模型,此模型会依据学生实时学习状态调整评估维度跟权重,达成从知识把握到能力拓展的综合评定,在反馈阶段,采用自然语言生成技术生成专属个性化诊断报告,更揭示学习当中的薄弱点,也给出依托知识图谱的改进路径提议,引入数字替身技术,替每一位学生创建学习能力数字孪生实例,以模拟不同学习策略中能力的发展轨迹,为学生呈现可视化的成长预估及决策辅助,造就"评估 - 反馈 - 改进"的闭环管理格局,助力信息类人才长久提升学习本领[4]。

4 结束语

由新质生产力所驱动,借助 AI 提升高校信息人才学习能力,乃技术发展必然趋向,也是教育改良的关键趋向,依靠构建智能化学习场景、改进个性化学习体验、增强协

作与创新水平以及完善评估与反馈流程,高校可更妥善地造就适应未来社会需求的信息行业人才,此过程绝非一朝一夕能实现,离不开教育工作者、技术研发者与政策制定者携手奋进,克服技术、伦理以及教学等多范畴挑战。

参考文献:

[1] 王宝成, 李梦一, 宋兆雪. 新质生产力驱动学术期刊高质量发展的逻辑理路[J]. 三峡大学学报(人文社会科学版),2025,(04):99-104+117.

[2] 包洁新. 新质生产力驱动下的贸易企业转型升级策略 [J]. 商场现代化,2025,(11):91-93.

[3] 孙莹,关大伟.新质生产力驱动黑龙江省森林冰雪旅游与碳汇经济融合发展路径[J]. 林业勘查设计,2025,54(03):79-85+94.

[4] 陈林玲. 新质生产力驱动下技能竞赛优化"五育融合" 育人模式探究[J]. 时代汽车,2025,(12):61-63.

基金项目:

课题信息:黑龙江财经学院校级课题《新质生产力背景下通过 AI 赋能提高高校信息人才学习能力研究》(课题编号 XIYB202519):

黑龙江省教育科学规划重点课题《产教融合背景下应 用型本科高校电子商务专业创新创业人才培养模式研究》 (课题编号: GJB1424318):

中国民办教育协会课题《"政校企"联动的产教综合体推动乡村数字经济人才培养模式的创新实践研究》(课题编号: CANFZG24089);

黑龙江省高等教育学会课题《新质生产力视域下黑龙江高校教育、科技、人才一体化中产学研协同机制创新研究》课题编号: 24GJZXE004.