

人机共创

——AI 应用在残疾人无障碍教育的全新挑战

熊慧敏¹ 张光子²*

- 1. 北京联合大学特殊教育学院实践教学中心 北京市 100075
- 2. 北方工业大学人工智能与计算机学院 北京市 100144

摘 要:当前,AI在残疾人无障碍教育应用集中于个性化学习路径生成、多模态无障碍获取,以及辅助沟通与情感社交技能训练。伴随国产AI大模型 Deep seek 等发展,AI在教育有突破,但面临特殊人群适配、算力资源分配、信息安全与身心保护等问题。经梳理特教领域 AI 应用现状,未来 AI 教育将更聚焦残疾个体,创新发展个性化、情感化的生命全景无障碍融合教育。

关键词: AI 人工智能; Deep Seek; 人机共创; 无障碍教育

1 AI 技术对促进残疾人无障碍教育发展具有重大意义

1.1 何为无障碍教育

2008 年,国家科技部与中国残联携手启动"中国残疾人信息无障碍建设联合行动计划"。次年,国务院正式开启《无障碍建设条例》的制定工作,对无障碍信息交流等方面作出明确、具体且具有强制性的规定。2011 年,我国首所面向全国优秀残疾青年开展高等教育的综合性院校——北京联合大学特殊教育学院正式建成。该学院秉持"以人为本、以特为主"的设计理念,遵循绿色通道式的建设思路,其核心亮点在于实现"无障碍"全景化生活。

1.2 AI 领域的人机共创解析

AI 大模型在信息搜索、归因、强逻辑推演及认知关联 上优势显著,众多教育工作者主动将其引入教学。2025 年 1 月国产大模型 DeepSeek 发布,凭深度逻辑推理与垂直领 域优势,推动教育从业者结合专业背景,开发面向残疾人 群的垂直智能体,融入教学场景。

未来学家雷·库兹韦尔指出: "人工智能能高速执行顶尖任务、大规模整合数据,预计 2029 年出现模拟人脑的强人工智能,此后技术呈指数级增长。" ^[3] 人机共创本质是借"人类+AI"能力互补实现共同演进: AI 负责信息收集、归因、标准化及重复性工作,人类专注创造性、情感连接与复杂决策,最终产生"1+1 > N"系统效应。

当下, AI 已用于教学目标设计、流程演练、信息采集、

教案生成及内容生产,传统教师主导的线性单向教学,正 演变为师生共参的"学习潮汐"。笔者突破"人用工具" 逻辑,构建人与 AI 互动、协同、赋能的深度关系,打造"协 作"共生生态,即"人机共创"模式。

1.3 为何在无障碍教育领域强调应用 AI 人机共创

人机共创是笔者基于人机共生关系,针对残疾人群实践教学模式强化后的总结。此模式延续计算机语言 "需求 →反馈→迭代→优化→二次需求" 的闭环流程,更注重教育互动的持续性与及时性,契合残疾学生在实际教学中的认知发展规律。如,师生借助 AI 共同完成创造性任务,实现协作性教学目标,提升信息传递效能,将 AI 从单纯辅助"工具"升级为伙伴式"协同创造者",能更好的契合残疾学生特殊需求。

2 AI 如何在无障碍教育领域应用人机共创

人工智能(AI)在残疾人无障碍教育领域的应用,主要聚焦于以下三个核心方向:

2.1 个性化学习路径与能力评估

AI 技术可细致洞察学生的学习偏好、能力层次以及特殊教育需求,进而为每一位残疾学生量身打造专属的学习规划。这一应用在众多特殊教育学校的实践过程中,已充分展现出其重要价值。

2.1.1 自生成式能力评估系统实践

潍坊盲童学校针对自闭症儿童感官特点,针对自闭症

儿童感官特征,开发了图片结构化课程、声画交互训练、动态行为模拟等教学模块开。通过 AI 技术整合 ABC(自闭症行为量表)、CARS(儿童自闭症评定量表)等权威评估量表,建立覆盖感知觉、语言沟通、社会交往等7大维度的评估模型。通过多维数据交叉分析,系统可生成精准的"能力画像",定制个性化教育方案(Individualized Education Program, IEP)。[4]

教师反馈传统评估完全依赖人工,耗时且精准度有限,如今仅一堂课互动,AI 自动生成可视化评估报告,还能随教学进度实时更新,精准定位学生能力薄弱环节,让教学目标更明确。

2.1.2 学习路径自生成与持续迭代

广州天河启慧学校针对中重度智力障碍及孤独症儿童教育需求,总结出 "资料收集—评估诊断—分析研判—方案拟定—实施推进—效果评价" 六步循环的个体化教育实践模型。^[5]基于此,该校借助 AI 大模型研发"个性化教育方案(IEP)管理系统",该平台历经三个阶段:

标准化 V1.0 阶段:基于角色共享编辑,实现 IEP 文档 规范化录入与共享。

自动化 V2.0 阶段:依靠规则数据联动,达成教学数据 与评估结果自动关联,目前平台正处于此阶段并即将升级。

智能化 V3.0 阶段(待升级):基于大语言模型智能生成,升级后可实现 IEP 方案智能生成与动态优化。该系统融合 GPT - 2.5 的 API(Application Programming Interface)端口与学校自研平台,依据残疾学生课堂互动频率、知识点掌握程度等实时学习数据动态分析,及时调整教学难度、内容和进度,借助 AI 学情分析功能,实现"一人一方案"的个性化学习追踪,让学习成效可视化、可监测、可跟踪,有力推动特殊教育教学。

2.1.3 应用价值

残疾学生个体差异极为明显,障碍类型、能力基础以及学习需求等诸多方面各不相同。AI 的运用成功攻克了传统教育"一刀切"式教材与统一教学大纲所引发的个体适配性欠佳难题。AI 技术凭借精准的数据收集与智能分析,能够显著增强个性程度,从而为残疾学生实现无障碍学习,给予更具靶向性的支持。

2.2 多模态无障碍获取信息

AI 辅助技术是搭建残障学生平等获取教育资源之桥,

除 Deep seek 等常用教学大模型外,当下流行的无障碍 AI 辅助技术,针对不同残疾类型,配备了适配性高的人机交互工具。

对视障人群,AI借助屏幕阅读软件或点字显示器读取网页信息。如科大讯飞"信息无障碍顾问",将终端文字转语音;Google 爱百福"慧眼识教",助视障者通过浏览器获取盲文资源。对听障人群,AI靠音源转译或图像识别获取信息。常见的科大讯飞"语音转文字"等工具,能实时转译字幕。AI 手语翻译 app 发展快,"中启手语通"等拥有大量用户。新团队研发的辅助工具,提升了残障学子学习自主性,如华中科大肖扬教授团队的"AI 唇语辅助训练系统",让听障人士唇语学习效率提高 3 倍,4 年助力343 人开口说话。[6]

2.3 社交情感与生活技能训练辅助工具

无障碍教育不囿于传统知识构建,还拓展至社交互动、情感表达与生活技能培养,旨在助力残疾群体塑造与人和社会的互动能力,融入社会。以 Chat GPT、豆包为代表的 AI 大模型,既能模拟人类共情,推演并表达社交场景,又能让人类在交互中安全投射情绪诉求,减轻人际互动心理压力。以苏州工业园区仁爱学校张群超老师的《我会解决问题——化解冲突》教案为例,该课程借生成式人工智能创设虚拟场景,助力自闭症儿童沉浸式学习社会技能。[7]

2.3.1 实施流程与方法设计

情境构建:虚拟冲突场景的生成与引导

课程目标:以"化解社交冲突"为核心导向,依托生成式人工智能工具构建虚拟学习场景,助力自闭症儿童沉浸式学习社会技能,提升其社交适应能力。

借助人工智能工具的关键词激活机制,生成校园冲突场景动画,引领学生开启"情境观察-问题分析"的初始学习阶段。在这一环节,学生输入诸如"争抢玩具"这类核心关键词后,系统便自动生成涵盖"人物角色、环境背景、冲突事件"的完整动画场景,具体设计如下表

在情境构建基础上,学生可化身 "虚拟调解员",在 场景中观察社交沟通技巧,并与虚拟冲突角色进行实时交 互,完成初步的社交技能模拟实践。

2.3.2 反馈与修正:即时化指导与场景交互优化

人工智能系统通过 AI 工具构建 "动态可交互视听场景",而非静态图像。学生可在虚拟环境中对冲突场景进

行 "观看、暂停、回放" 反复操作,减少真实社交情境中可能产生的焦虑与挫败感;系统同时根据学生的交互表现

(如策略选择、角色互动)提供即时反馈与针对性指导,帮助学生修正行为偏差。

维度	具体内容	呈现视角	情绪演绎要点
人物角色	抢夺者、被抢者、调节员	三位一体视角	突出角色人格定位差异
环境背景	关键策略视觉化呈现	沉浸式体验	多维度展示场景细节
冲突事件	争抢玩具(示例关键词)	三位一体视角	多视角还原冲突发生过程
角色体验	角色情绪反应	多视角切换	包含表情、动作、语言等非语言线索,增强情境真实感
行为推演	社交规范简要反馈	认知强化导向	覆盖 "生气、哭闹、协调、理解、友善、平和、快乐、和谐" 等情绪维度

2.3.3 应用价值

技术应用价值上,AI 虚拟场景助力残疾群体提升沟通 技巧、实现情感识别干预,通过交互数据提前发现情绪问 题并提供个性化方案,优化学习体验。该技术路径为残疾 群体深度参与社会生活创造条件,助其实现情感自控、掌 握生活技能。

3 国产 AI 在教育领域应用的挑战剖析

随着国产 AI 大模型 Deep seek 的拓展升级以及端对端设备开发的不断深入, AI 在教育领域虽取得一定突破, 但仍面临诸多亟待系统性解决的挑战。

技术适配性待提升: 国产 AI 在特殊教育场景技术适配性差。产品碎片化,算法模型适配需提升,当下特色 AI 应用多为特教从业者或残障精英独立开发的小场景应用。因市场普及与开发人员不足,难以形成系统支持,普适性低。

经济资源成瓶颈:先进 AI 价格高昂,基础算力设施建设滞后、资金短缺。虽推进相关建设,但大量二三线及偏远地区教学机构,仍无力购置运行 AI 应用端先进设备,限制技术覆盖。

师资培训缺口大:我国 8500 万残障人士仅对应 7.7 万特教专任教师,师资严重不足。同时,教师 AI 素养欠缺,缺深度专项培训体系,技术接受与操作能力有限,制约了 AI 教学应用。

数据隐私和安全问题风险: AI 大模型技术在教育领域的应用,大量敏感学生信息和学习数据被收集及分析。如果没有严格的数据保护措施,这些信息可能面临被不当使用或泄露的风险,不仅侵犯学生隐私,也可能使他们与家庭暴露于网络攻击之中。[8]

4 AI 教育无障碍技术: 任重而道远

残疾人教育领域推进全景无障碍,是复杂的系统工程,需政府、企业、产业界、教育界乃至全社会协同关注与推动。 展望未来,我们期待的 AI 发展创新方向是迈向更精准的个性化教育、深化情感计算乃至实现生命全景多模态交互融合。 借助深度学习与大数据分析, AI 将更精确洞悉每个学生的独特需求,定制更为个性化的教学方案与资源。AI 将更敏锐地识别学生情绪状态,给予情感支持与心理辅导,这对幼年残障及伴生情绪障碍学子们意义重大。随着 AI 眼镜、脑机接口等 AI 辅助技术进一步升级,人机应用端将整合视觉、听觉、触觉等多感知通道,将为残障人群营造更自然、流畅的信息体验。

参考文献:

[1] 高飞.人工智能助力特殊教育高质量发展[N]. 新华日报, 2025年03月21日15日(版次15)

[2] 中华人民共和国教育部. 积极推动人工智能赋能教育强国建设[EB/OL]. 中华人民共和国教育部官网, 2025-04-02.

[3]Ray Kurzweil. 李庆诚等译. 奇点临近: 2045 年, 当 计算机智能超越人类 [M]. 机械工业出版社版, 2022 年版: 第 80 ~ 158 页

[4] 尹艺媛 马立伟. 山东移动潍坊分公司 AI+ 大数据解决方案赋能特殊教育 [EB/OL]. 半岛网.5月13日.

[5] 李娜 周静 叶叶秀 陈晖. 数智强师 用 AI 之光点亮培智教育新梦想——广州市天河区启慧学校以人工智能助推教师队伍建设. 中国教育报 [N], 2024年11月29日,第08版: 高校新风.

[6] 李欢燃 冯宁萱 雷宇 . 创新纾困 青年不当"看客"做 先锋 . 中国青年报 [N], 2024 年 10 月 14 日 (头版头条).

[7] 苏州工业园区特教指导中心.人工智能赋能特殊教育新课堂—记仁爱学校"仁爱杯"党员三人行公开研讨活动[EB/OL].官方公众号. 2025 年 4 月 24 日.

[8] 王翔宇.人工智能赋能特殊教育数字化治理转型:价值、困境及实践路径[J].现代特殊教育,2024年(7期):22页作者简介:熊慧敏,北京联合大学特殊教育学院实践教学中心,实验师,擅长媒体类信息技术教学教研活动。

张光子,北方工业大学人工智能与计算机学院,教师,擅长媒体类信息技术教学与人工智能技术应用研究。