

关于混凝土结构构件最优配筋率探讨

冷杨川

身份证号码: 510105******0512 成都 610001

摘 要: 我国建筑业大量使用混凝土结构作为受力体系,然而随着经济的深入发展,在国家节能减排的政策下,对结构设计及造价提出了更高的要求,结构设计不仅要做到安全合理,更要考虑结构构件的经济节约,本文旨在通过理论计算以及实例验证给出结构构件的最优配 筋率、供结构设计参考。

关键词: 混凝土; 结构设计; 结构构件; 经济节约; 最优配筋率

1引言

我国建筑业大量使用混凝土结构作为受力体系,然而随着经济的深入发展,在国家节能减排的政策下,对结构设计及造价提出了更高的要求,结构设计不仅要做到安全合理,更要考虑经济节约,不仅为企业节省成本,也降低了对结构材料的使用,间接降低了社会生产能耗。

2 理论依据

$$\xi_{\rm b} = \frac{\beta_{\rm l}}{1 + \frac{f_{\rm y}}{E_{\rm s} \varepsilon_{\rm cu}}}$$

根据混规 4.2.3 条三级钢普通钢筋的抗拉强度设计值 fy=360Mpa, Es=200000 Mpa, 混规 4.1.4 条混凝土轴心抗压强度的设计值 fc=14.3 Mpa,混规 6.2.6 条当混凝土强度等级不超过 C50 时, β 1 取为 0.80,再根据混规 6.2.1-5,计算可得 ζ b=0.518。

3 理论计算过程

我们以一个纯受弯构件为例,考虑平截面假定,不考虑箍筋及 上部钢筋,如图 1。

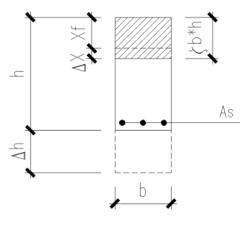


图 1

通常情况下,钢筋的价格远高于混凝土的价格,如果要做到构件最经济节省,那么势必要减少钢筋的用量,如果荷载不变的情况下,要减少钢筋的用量,肯定会引起截面增大混凝土用量的增加,根据这种思路,我们假定混凝土增量为 $\Delta h*b$,钢筋减少量为 ΔAs ,混凝土受压区高度减少量为 Δx 。根据平截面力的平衡原理, 0.518*h*fe*b=fy*As(等式 1), $\Delta As*fy=\Delta x*fe*b$ (等式 2),假设截面增大后不改变构件成本, $\Delta h*b*400=\Delta As*7.8*4000$ (等式 3),由等式 1–3 可推导出 $\Delta s=0.02*b*h$, $\Delta As=0.0128*\Delta h*b$, ΔX

=0.3224* Δ h,由此可知,截面最大受弯承载力为: Mu=fy* (As- Δ As)*[h+ Δ h-0.5* (0.518h- Δ X)]=fy* (0.02*b*h-0.0128* Δ h*b) (0.741*h+1.1612* Δ h)=fy* (-0.01486*b* Δ h^2+1.3739%*b*h* Δ h+1.482%*b*h^2),根据最大值原理, Δ h=0.4623h 时,Mu 有极大值,此时 xf=0.518h- Δ X=0.369h,配筋率 ρ = (As- Δ As)*fy/(h+ Δ h)/b=0.963%

4 实例验证

通过中国建筑科学院编制的 pkpm 软件建立 3x3 跨一层的框架结构,如图 2,按 ρ = 1%和 ρ = 2%计算出各自造价,并验证该理论是否合理。

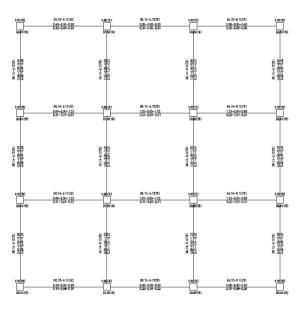


图 2

选用梁截面大小为 250*500, 初始附加恒荷载考虑 5KN/m2, 活荷载考虑 4KN/m2, 经过 pkpm 计算, 其大部分框架梁配筋率约至 1%, 局部如图 3:

图 3

经过 pkpm 工程量统计计算得出如下 (仅统计梁构件):

构件	混凝土用量(m^3)	钢筋用量(吨)
梁	18. 0	1. 9

按照上文提到的材料参考价格,其水平受弯构件总的成本为: 18*400+1.9*7800=22020 元

然后保持荷载不变情况下减小截面大小为 250x400, 此时大部分框架梁配筋率增加约至 2%, 局部如图 4:

经过 pkpm 工程量统计计算得出如下:

构件	混凝土用量(m^3)	钢筋用量(吨)
梁	14. 4	2.8

图 4

同样, 计算其水平受弯构件总的成本为:

14.4*400+2.8*7800=27600 元,超过梁配筋率为1%时结构成本的25%左右。

因此从以上实例验证说明, 混凝土构件最优配筋率理论推导符 合预期。

5 结束语

本次关于结构构件的最优用钢量计算仅考虑了纵向钢筋的最 优配筋率情况,并且计算建立在一个给定的材料市场价格前提之 上,随着市场价格的波动,可以利用该理论原理计算出不同情况下 的结构成本最优解,可供设计单位借鉴参考。

参考文献:

[1]《混凝土结构设计规范》GB 50010-2010 中国建筑科学研究 院

作者简介:冷杨川,男,工程硕士,一注结构。