

桥梁施工中挂篮悬浇施工技术研究

王勃然

武汉市汉阳市政建设集团有限公司 430050

摘 要:桥梁工程的施工质量不仅关系着人们的出行安全,还决定了区域经济的发展和社会的稳定。基于此,本文简述了桥梁施工中挂篮 悬浇施工技术的优势,研究了桥梁施工中挂篮悬浇施工技术应用要点,结合实例分析了挂篮悬浇施工技术在实际桥梁施工中的效用,以供 参考。

关键词:桥梁施工;挂篮悬浇技术;施工技术

引言:

桥梁工程的施工质量对于保障国民的生命财产安全意义重大, 为了实现桥梁工程施工质量和施工效率的双重提升,建筑企业开始 加强对施工技术的研究,通过挂篮悬浇施工技术,使桥梁施工实现 经济效益和社会效益的双重保证。在桥梁施工中,应用挂篮悬浇施 工技术具有明显优势。

1.桥梁施工中挂篮悬浇施工技术的优势

1.1 提升施工效率

挂篮悬浇施工技术应用于桥梁工程施工能有效提升施工效率。目前该技术已基本实现自动化操作,减少人工操作带来的安全隐患,还能有效减少对人力的依赖性,降低人力资源成本。在应用挂篮悬浇施工技术过程中,斜式拉梁能有效提升桥梁受力系统的科学性和规范性,通过提升工程建筑段的混凝土重量,使整个桥梁的稳定性得到提升。相比于传统施工技术,挂篮悬浇施工技术更容易进行结构体的拆装,增强了施工技术的灵活性,为施工工人提供了方便,促进了施工效率的提升。

1.2 降低施工难度

目前很多桥梁建设项目的施工地形复杂,若采用传统的施工工艺,需要在架设设备上投入大量的人力、物力,而且施工成本巨大。通过挂篮悬浇施工技术能轻松克服复杂地形带来的困难,能节约施工成本,还能保障施工的安全。挂篮悬浇施工技术被广泛应用于山河、湖泊或跨海桥梁的架设工程中,打破了地形对桥梁工程的限制,降低了桥梁施工的难度。

1.3 保证施工安全

挂篮悬浇施工技术在桥梁施工过程中,还能帮助施工人员完成现场数据的测量,保证施工的安全性。传统的桥梁施工很难进行施工现场相应数据的准确测量,一定程度上增加了施工的难度和风险。在运用挂篮悬浇施工技术后,可进行桥梁载荷、内外模重量、施工段长度的数据测量,通过数据分析和模拟能获取多种载荷组合形式。以精准数据作为实际施工作业的参考,能提升桥梁工程的科学性和合理性,保障了施工人员的生命安全。

1.4 提高工程质量

挂篮悬浇技术在桥梁施工中能起到提高工程质量的作用。挂篮悬浇施工技术在实际桥梁的施工过程中,能对施工工序进行管控。通过挂篮悬浇施工技术可以计算出静载预压,将相应数值用于梁体重量模拟,可以直观呈现出桥梁的分布情况,通过分析可以预知桥梁工程的施工难度,并有针对性地做好预防措施,确保施工的安全和顺利。同时,挂篮悬浇施工技术采用稳定性较高的挂篮行走系统,可保障桥梁物料投放的准确性。挂篮悬浇施工技术能准确控制斜拉梁,使斜拉带质量得到保证,从而提高桥梁工程的整体质量点。

2.桥梁施工中挂篮悬浇施工技术应用要点

2.1 确定参数

桥梁施工过程中应用挂篮悬浇施工技术前,首先需要确定相关设计参数。设计参数的精准度和合理性对于桥梁建筑具有重要意

义。若设计参数不合理,桥梁在投入使用后,可能会出现裂缝和破损减少桥梁的使用年限,严重还会威胁人们的生命财产安全。因此,在施工前,必须要精准测量桥梁施工区域的各项数据,并做好参数的设计和管理工作。施工单位还要针对桥梁的施工工艺和材料选择给予意见和建议,帮助设计部门进行图纸的优化调整。在进行各项参数数值的测量工作时,需要注意区分不同区域的受力情况,分步骤确定桥梁各区域的参数数值。例如,桥梁两端与中间区域的载荷存在差异,设计的参数值也存在差别。测量人员需要在测量过程中注意数值的准确性,并对数值进行科学分析,确保所提供的参数能为设计部门提供实质上的帮助。

2.2 挂篮制安

我国目前挂篮悬浇施工技术有型钢式挂篮、桁架式挂篮、斜拉 式挂篮和混合式挂篮等,主要采用菱形、三角形、弓弦型和牵索式 四种形式的挂篮,结构由主梁桁架、锚固系统、上下横梁、承重和 模板系统以及行走和横向连接系统、主梁悬吊等构成。其中三角形 挂篮整体架构较简单,且受力清晰,应用较为广泛。实际施工中, 外模采用大块钢模能使整个箱梁的外观质量得到保障, 在千斤顶的 牵引下,确保挂篮架构的平稳性和安全性。挂篮需要在0*块预应力 施工结束后进行安装, 先安装滑移轨道。通过竖向预应力筋, 可以 让滑移轨道到达锚固。吊装主桁架, 使其与滑轨锚固后, 通过型钢 完成主桁架左右两侧的支撑,再安装吊带与横梁,最后铺设底模纵 梁和横梁底模板。0"块完成施工后,在挂篮外模的帮助下完成解体 后,通过吊运的方式将其运送到下一段梁体底模的外侧,在进行牢 固支撑后,进行外侧模板吊梁和吊杆悬吊外模的安装。安装过程中 需要注意挂篮的拼装必须保证对称,误差应不超过5t。构件安装结 束需要对挂篮进行检查和调试,严格复核外模板位置,及时采取有 效措施解决复核过程中发现的问题,提升挂篮使用的安全性。

2.3 钢筋绑扎与焊接

在完成挂篮安装后,需要进行模板安装。模板主要有三个组成 部分,分别是面板、横纵肋和支架。模板的主要作用是承受浇筑重 量和施工中的自然荷载,能有效控制桥梁梁体结构尺寸的精度,保 障浇筑工作的施工质量。施工人员需要对模板安装环节加强重视, 确保施工的安全。需要先进行支架的拼装和底模的安装,再进行外 侧模板吊装和钢筋网片搭设, 完成后需要安装竖向力筋和管道。依 次进行纵向管道和内侧模安装后,需要进行顶板钢筋的绑扎作业。 桥梁施工所用的预应力筋一般都是制作完成时进行细钢丝绑扎并 编号,然后直接运送至施工现场。在进行安装之前,需要按照图纸 要求进行放样并合理控制误差。为防止钢筋在焊接过程中,由于高 温作用导致钢筋变形,可采用双面焊缝的方式,确保钢筋在变形后 依然保持对称和均匀。单面焊缝的方式需要注意,与骨架平面 90 。 方向上应预留合适的拱度。焊接时应先施点焊,再通过分段和分 层的方式进行跳焊。施工人员需要按照从骨架中心向两端的顺序进 行对称性焊接,并保证所有焊缝都是一次性完成。若同一部位存在 多层钢筋焊接时要注意错开焊缝。若多层钢筋的型号不同时,施工

人员应先进行相同规格钢筋的焊接,再焊接其他型号。钢筋的安装过程,需要施工人员控制好安装位置的准确性。将钢筋下部埋设在混凝土垫块中,并进行钢筋的绑扎。为保证保护层的厚度,需要在钢筋和模板侧面绑扎一根短钢筋,包括相同水平高度的两条相邻钢筋以及上下层钢筋之间,也同样需要用短钢筋进行绑扎。

2.4 混凝土浇筑

完成钢筋的绑扎和焊接后,需要进行混凝土的浇筑工作。作为挂篮悬浇施工技术的重要组成部分,混凝土的浇筑工作需要注意以下方面:首先浇筑方法。为提升混凝土输送的稳定性,常用的混凝土施工方式为泵送的方式,此方式能减少外界环境对施工的影响。运输过程中,若混凝土温度过高容易导致其硬化影响浇筑效果,因此需要合理控制混凝土在运输过程中的温度,结合外界实际环境的变化进行混凝土的管理。在现场制作的同时进行施工,有利于对混凝土内部材料比例的掌握。其次混凝土的灌注施工最好是一次性完成,避免因混凝土凝固导致表面产生裂缝,影响施工效果。需要施工人员在混凝土灌注过程中加强监督管理,安排专门工作人员负责进行质量监管,保证混凝土表面的平整度和光滑度。最后,通过预应力孔道压扁处理技术将混凝土的预应力控制在合理范围内,避免混凝土因设备振动导致其表面形成暗纹,避免混凝土表面的平整度受到影响。混凝土浇筑完成后,应做好后期的保养工作,定期安排工作人员进行检查维护,提高管道的使用寿命^[3]。

2.5 合龙段施工

桥梁建设中合龙段施工是挂篮悬浇施工技术应用的重点环节, 施工人员需要结合工程的实际情况,安排边跨合龙与中跨合龙的相 关工作。边跨合龙过程中,首先需要进行悬臂端、现浇端梁体顶以 及底板高程的测量,可利用悬臂端的挂篮进行量测工作,再确认精 度是否符合相关要求, 高程可以通过加载进行适当调整。合龙段的 连接方式采用体外刚性连接方式可确保长度不变, 在顶部表面和底 板表面需要分别埋设钢板,并通过工字钢进行焊接,建立刚性连接 体系,锁定合龙段长度。完成焊接后需要对顶部和底板索进行预先 张拉,并在合龙完成后进行张拉吨位的补充,确保符合设计要求。 合龙段浇筑工作应注意选择在气温较低的时间段进行,升温时,混 凝土的受压状态会保持良好。合龙段混凝土浇筑施工需要确保拌合 质量,特别是注意新旧混凝土交接处要做好振捣工作。通常要求混 凝土的浇筑工作应连续、快速且不中断进行,一般浇筑时间应控制 在 4h 之内。浇筑结束后,需要加强养护工作。中跨合龙过程中, 可将挂篮作为吊架,并在施工过程中保证 T 构的平衡。观测合龙段 梁端的实际高程能对精度情况进行确认,要保证合龙开始前两端悬 臂的高度差小于 1.5cm。在完成底模标高的调整工作后,可开始进 行外侧模板的支设,并进行底板和腹板钢筋的绑扎工作,完成后进 行孔道与竖向力筋的布置。合龙完成后,同样需要进行张拉吨位补 偿,确保符合设计要求,合龙段两端应保持对称,增加配重应为浇 筑混凝土重量的一半。中跨合龙时混凝土浇筑方式与边跨合龙时一 致。接下来,施工人员需要解除主墩支座附近的临时锁定,凿除临 时支座上的混凝土,并按照标准次序依次完成预应力索的张拉工 作,将之前完成的预先张拉施工临时锁补充张拉到设计要求的张拉 力,最后完成其他预应力筋的张拉工作[4]。

3.实例分析

3.1 工程概况

我国某桥梁工程采用连续钢结构,跨径组合为90m+160m+160m+160m+90m,总长约1469m。该桥梁下部结构为双薄壁空心墩,墩身高度分别为138m、130m、80m 与58m。桥梁基础为钻孔灌注桩,桩径2m。方形承台厚度为4m,分为左右两幅,顺桥向上承台尺寸为18.5m,横桥向上承台尺寸为11.5m,每幅工程量为851m³· 浇筑选用强度等级为C30的混凝土。挂篮悬臂浇筑技术主要应用于桥梁上部结构的施工^[5]。

3.2 施工工艺

在实际施工过程中,施工单位对挂篮走行定位的条件进行了严 格要求。要求混凝土的实际强度必须达到设计要求的95%,并且要 保证在挂篮走行前完成上一个阶段所有纵向预应力的施工张拉工 作。为了保证施工安全,施工人员在主梁和挂篮之间设置了保险绳, 有效避免走道梁和箱梁之间锚固不到位的情况。在挂篮走行过程 中,需要重点关注走行速度。两只挂篮同时走形需要经由专人进行 统一指挥,确保挂篮的同步性。施工人员在挂篮走行前要求进行装 置的检查,确保左右设置到位,并对主梁上的钢丝进行锚固。施工 人员在进行挂篮走行操作前,在挂篮的走道上均匀涂抹黄油进行润 滑。在挂篮到达指定位置后,需要通过测量放线操作,安装地模侧 模。施工人员采用了拉杆对内模进行了固定,避免在安装时内模出 现上浮的情况。在箱梁的张拉环节,施工人员先进行了腹板的预应 力束张拉,然后完成竖向与横向的预应力束张拉。在进行混凝土的 浇筑工作前,施工人员对挂篮结构、模板钢筋和预应力体系进行了 反复确认与检查,在确定合格后,才开始混凝土的施工作业。混凝 土浇筑为保证连续性和均匀性,施工人员进行了分层浇筑的方式, 每层厚度控制在 30cm 以内, 使浇筑质量得到保证。该桥梁施工时 间为冬季, 因此, 现场采取了科学有效的防冻措施。为了将混凝土 的温度控制在合适的范围内,施工人员在浇筑过程中对混凝土原料 进行了适当加热处理,有效减少了混凝土裂缝的情况。浇筑完成后, 施工人员对混凝土开展了相应养护, 在拆模完成后, 施工人员对混 凝土进行了包模处理。

3.3 应用评价

该桥梁施工时,依据梁体分块重量和分块长度, 挂篮受力构件选用工字钢,使挂篮重量一定程度上有所减轻,方便了挂篮的拼装、行走,为施工人员营造了良好的施工条件。选用工字钢作为挂篮的横梁与纵梁的材料,挂篮的吊杆采用精轧螺纹钢筋。调整底栏的实际标高需要应用千斤顶,通过精轧螺纹钢将底栏的后端与完成浇筑的梁段底板进行锚固。挂篮拼装完成后,需要进行后锚点的张拉工作,确保箱梁底板接头的平顺度,避免因施工缝导致箱梁底板的质量受到影响。将挂篮拼装完成,施工人员采用静载试验的方式对挂篮结构刚度大小进行了确定,并确定弹性变形产生范围,箱梁标高的范围得到了有效控制。通过吊杆可将底模与侧模运送至相应位置,通过预留孔使底板和侧模板与完成浇筑的梁段来实现后锚点面结,前端仍需要进行高程的调整,直到符合设计标准。预留沉降缝,并调整好悬挂钢筋实际拉力,确保受力均匀,锚紧吊杆。挂篮悬臂浇筑法在桥梁的施工过程中,有效提升了施工的进度,相应参数的控制使桥梁的质量和安全性得到了保障。

总结:

综上所述,挂篮悬臂浇筑施工技术对于现代桥梁的施工实用性 较强,不仅能有效提升工程的施工进度,还能保障桥梁工程的稳定 性,对于我国桥梁事业的发展意义重大。未来还需要加强对挂篮悬 臂浇筑施工技术的研究,施工技术的不断进步,进一步提升我国桥 梁工程的建筑水平。

参考文献:

[1]黎维良. 超高性能混凝土材料在桥梁工程中的应用[J]. 合成材料老化与应用,2023,52(01):147-149.

[2]吴欣. 桥梁工程施工中的桩基加固技术研究[J]. 工程技术研究,2023,8(03):216-218.

[3]李亢. 道路桥梁工程施工材料检测问题探讨[J]. 工程建设与设计,2023,(02):230-232.

[4]康晓东. 道路桥梁工程施工质量技术分析[J]. 品牌与标准 化 2023 (01):147-149

[5]白云涛. 桥梁工程施工中的后张法预应力施工技术分析[J]. 大众标准化,2023,(01):64-66.

作者简介:王勃然,武汉市汉阳市政建设集团有限公司,研究 方向:市政桥梁施工。