

建筑工程施工中深基坑支护的施工技术管理分析

张鸿字1 吴天泽2

- 1.沈阳维华工程管理有限公司 辽宁省沈阳市 110000;
- 2.沈阳城科工程检测咨询有限公司 辽宁省沈阳市 110168

摘 要:建筑工程中的深基坑支护技术是土木工程领域中的关键技术之一。随着建筑物高度的不断增加和城市化进程的加快,深基坑支护技术在建筑工程中得到了广泛的应用。然而,在实际施工中,深基坑支护技术的施工管理存在着一些问题,如施工质量难以保障、施工周期较长等。为了解决这些问题,需要加强深基坑支护的施工。基于此,本文将对建筑工程施工中深基坑支护的施工技术管理进行简单分析。 关键词:建筑工程;深基坑支护;施工技术;技术管理

1.深基坑支护的定义和分类

深基坑支护是指针对城市基础设施建设中需要用到的地下建筑空间,采用一定的施工组织和技术措施,在局部范围内保证工程施工安全、确保周边建筑物的稳定,以及直接或间接满足工程使用性能的要求的行为。

深基坑支护的分类主要根据以下几个方面进行划分。根据施工方式的不同,深基坑支护可分为非连续墙式的支护和连续墙式的支护两大类。非连续墙式支护适用于坑径较小、基坑深度较浅、坡度较平缓或只有一级坡的情况,其中常见的支护形式有护岸、管桩、喷浆桩等;而连续墙式支护在深基坑支护中占有非常重要的地位,适用于基坑深度较大、坡度较陡或存在多级坡以及地下水位较高等情况,其中常见的支护形式有悬挂墙法、开挖顶进法、逆作用法等。

根据支护结构形式的不同,深基坑支护可以分为砖砌式、钢筋混凝土墙式、钢板桩墙式、预应力混凝土墙式、复合式、大直径深孔桩壁式和新型材料深壁支护等多个类型。随着科技水平和施工技术的发展,深基坑支护技术不断更新换代,各类深基坑支护技术相继出现并得到不断推广和应用,从而促进了深坑工程建设的快速发展。

2.建筑工程施工中深基坑支护的施工技术管理

2.1 施工前期准备工作

在深基坑支护工程的施工前期,需进行全面而细致的准备工作,以确保后续施工顺利进行。具体而言,施工前期准备工作主要包括以下几个方面:

- (1)组织设计文件审核:深基坑支护工程需要按照设计文件进行施工,因此首先需要对设计文件进行审核,确认设计方案的准确性和合理性。
- (2)监测方案制定:深基坑支护工程处于敏感地段,需要进行监测和控制,以确保施工安全。因此,施工方需要制定监测方案,明确监测点、监测指标等内容,并对监测设备进行检查和校准。
- (3) 材料及设备准备:深基坑支护工程需要使用大量的材料和设备,因此在施工前期需要进行材料和设备的准备工作。具体而言,包括钢板桩、橡胶防水板、钢筋、水泥、振动器、抽水泵等。
- (4)施工方案制定:深基坑支护工程施工过程中可能出现各种意外情况,因此在施工前期需要制定施工方案,以备不时之需。

同时, 施工方案需要与监测方案相结合, 确保监测数据的精准和可靠。

(5)安全生产方案制定:深基坑支护工程施工现场往往涉及 高处作业、机械设备运转等危险因素,因此在施工前期需要制定安 全生产方案,明确操作规范、危险源及应对措施等内容。

2.2 施工过程中的深基坑支护管理

(1) 合理选择支护形式

在深基坑支护施工中,通常会采用一到两种不同的组合方式进行支护。支挡式结构基坑是一种广泛应用于一至三级基坑的支护形式,其选择应根据基坑土壤状况、周边情况以及开挖程度等因素进行科学合理的决策。在二三级基坑中,土钉墙支护是一种常用的方法,它不仅可以对土壤情况进行评估,还可以同时掌握降水和地下水位等相关信息。在二三级基坑中,重力式水泥土墙支护的应用效果显著,特别是在处理淤泥土质情况时表现更为优异。

(2) 做好基降排水工作

在深基坑的设计和施工中,若基坑土层的渗透吸收效果比较强并且还配备承压水头,则必须考虑坑底情况,以避免地下水对基坑施工的不利影响;出现突涌情况时,稳定性要求无法得到满足,因此需要采取更为有效的措施,从而尽量将影响降到最低。一般情况下,对于处理该问题,可以采用管井和井点的降水措施。

这两项措施展现出了显著的成效,且其施工过程简单易行,成本也相对较低。通过采用井点降水法,不仅可以有效改善土壤的物理性能,还可以避免支护结构的变形,从而提高支护的质量。在存在高地下水位和强渗透性的基坑中,周围环境会受到严重的降水影响,因此需要进行节水处理。止水帷幕是一种成本较低、广泛应用于基坑支护的有效方法。

对于深度较大的基坑,采用地墙整水措施可以有效地与支护桩结合,但其需要更多的成本。在进行基坑支护施工时,设计和施工人员不仅要精确评估坑内水情况,还必须对地表水问题进行充分考虑,并运用排水沟等有效手段进行处理,以确保施工的有效性。

(3) 规范基坑施工工序

在进行深基坑开挖时,常常需要对整个工序进行分割,以便于进行多次施工。为确保后续工程的顺利开展,需根据现场地下水条件、施工条件以及图纸要求,精选最适配的支护方式。在进行基坑

开挖时,应根据支护结构的设计情况,采用平面布置法进行较大尺 寸的开挖。在施工前,需要对加固土强度、支撑强度和锚杆拉力等 因素进行详细的分析。

其中基坑开挖支护流程图如图 1 所示。

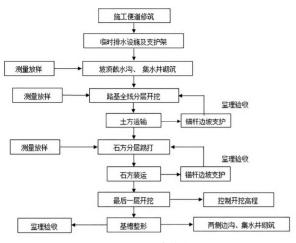


图 1 基坑开挖支护流程图

(4)控制附近地下水位

将深基坑附近地下水位的控制纳入施工技术管理的重要范畴, 以确保施工过程的顺利进行。因为地下水位过高或者过低都会对整 个工程施工带来一定影响, 所以必须采取有效措施降低地下水位, 确保工程安全运行。目前,止水帷幕已广泛应用于建筑工程领域, 有效控制施工过程中的止水现象,从而确保高水位地区的建筑施工 作业顺利进行。在深基坑的施工过程中,施工技术管理人员能够将 止水帷幕、压力注浆、深层搅拌以及高压喷射等多种施工技术应用 到工作当中,从而有效控制水源。

在进行止水控制的同时,必须进行搅拌桩质量控制,因为如果 成桩质量不佳,导致断桩,那么在开挖深基坑时,渗水问题就很容 易出现。为了解决这一问题,需要采用灌浆等补救措施,这将进一 步提高工程造价,并且会使深基坑的施工周期大大延后。为确保成 桩可以保持在高质量水平,施工技术管理人员需科学确定水泥浆配 合比,以确保桩长和搅拌均匀度符合施工标准和要求,避免出现桩 头无浆的情况。为确保深基坑施工的顺利进行,必须严格控制桩头 开衩、孔洞、蜂窝等质量问题, 以避免这些问题对桩体的最终长度 和搭接密度造成任何不利影响。

2.3 现场的监控和管理

首先,在深基坑支护施工过程中,应该加强现场的监控和管理。 为了保证工地现场的安全和环境的卫生,需要设立必要的监控机 制。选择合适的监控点位,确定到达监控点后立即通知管理人员进 行检测。监控措施应该通过实地勘查和现场测试,每天对钢支撑结 构进行巡查和测量,检查是否存在变形和沉降问题。同时,施工现 场应加强对于施工人员的安全性教育,注重现场管理。将防护手套、 工作服等必要的个人防护用品发放给施工人员,同时也不断加强员 工的安全卫牛教育,增强员工的安全性意识。

其次,在深基坑支护的施工管理中,需要加强施工进度的管控。 计划合理的施工方案, 做出科学的施工计划和时间表, 确保施工进 度得以实现。根据实际情况对计划进行调整,紧盯关键节点完成,

确保工期的准确性和连续性。若出现工期延误的情况需要及时沟 通,认真分析原因,并努力解决问题。

2.4 施工后期验收和维护

深基坑支护工程按照规定的程序完成后,需要进行验收。验收 的目的是验证工程的质量和安全性,以确保满足设计和施工规范的 要求。验收过程中需要严格按照标准、规程、规范和施工图纸进行 检查,特别是需要对支护结构的复杂程度、形状尺寸、地下水位、 土层性质以及围护结构的可靠性进行综合检验。

验收时需要进行的检查工作包括:支撑结构、围护结构、基坑 内甲烷、氧气浓度、沉降等。首先需要对支撑结构进行检查,包括 支撑结构的数量、位置、高度、尺寸、材料等。其次,需要对围护 结构进行检查,包括钢支撑是否稳定、支撑水平度是否满足设计要 求、搭设是否符合规定等。另外,需要通过环境监测仪对基坑内的 甲烷、氧气浓度进行检测,并绘制趋势图来进行分析和评估。同时, 还要对基坑周边建筑物、管线、道路等进行检查, 以确保其不受支 护工程的影响。

验收过程中需要特别注意的是对沉降的监测。沉降是工程质量 的重要指标之一,对建筑物和地下管线等都有很大的影响。必须制 定详细的沉降监测计划,在建造期间和竣工后的一段时间内进行监 测,以及时掌握沉降的趋势和变化。在验收过程中发现的问题需要 及时处理。对于支护工程质量和验收结果不合格的,要予以整改和 复验。验收合格后,需要进行基坑的维护。

维护的主要任务是对支护结构、围护结构进行定期检查和维 修,并对周边环境进行监测。基坑维护中也需要进行计划设计, 制定预防保养方案,按计划进行检测,及时了解其运行状况,提 前预知可能出现的故障,做好防范工作,保证基坑支护系统的正 堂运行.

同时, 在维护过程中也需要加强安全管理, 避免人员误操作和 工程创新修建引起的质量问题, 保证基坑的持续稳定和安全性, 为 城市建设和发展提供坚实的基础保障。

深基坑支护是建筑施工过程中的重要环节, 也是极具挑战性的 工程,如何提高施工效率、保障工程安全一直是业内的关注焦点。 为了确保工程建设质量的有效性,工作人员需要在支护技术的选择 上做出合理决策,并以实际施工情况为准,对其进行不断优化和改 进。此外,为确保工程建设的安全性和稳定性,施工现场的技术监 督管理工作必须得到充分的重视并积极落实。

参考文献:

[1]郑海锋.建筑工程施工中深基坑支护的施工技术管理[J].工程 建设与设计, 2018: 203-204+207.

[2]代金龙.建筑工程施工中深基坑支护的施工技术管理[J]科学 技术创新, 2020: 2.

[3]廖予.建筑工程施工中深基坑支护的施工技术管理[J].河南科 技, 2019: 107-109.

[4]常勇.建筑工程施工中深基坑支护的施工技术管理及应用[J]. 科技创新导报, 2020: 20-21.