

后张法预应力对大跨度高精度清水混凝土风洞洞体的变形控制与调节技术研究

杨明学¹ 耿耀明² 白亚辉² 1.中国空气动力研究与发展中心 四川绵阳 621000 2.同济大学建筑设计研究院集团有限公司 上海 200000

摘 要:大型低速风洞洞体结构的变形控制要求远高于一般混凝土构件的挠度限值,常规设计措施和施工方法难以 保证如此高的完成精度,为保证项目设计方法的可靠性,施工建造的可行性,同时兼顾投资成本的经济性,开展结 构模型试验研究,指导后续设计及建造工作。试验以风洞跨度最大的稳定段为研究对象,制作原尺寸试验模型,采 用后张法预应力方法对大跨度高精度清水混凝土洞体的变形进行控制与调节。经现场综合检测,各测点实测变形与 结构理论计算值十分接近,且远小于限制,满足高精度风洞洞体的各项指标要求。模型制作采用钢结构内核支撑体 系,其强度、变形和整体稳定性满足试验精度需求。后续将持续优化模架支撑等技术方案,力争在项目洞体施工措 施费计划资金3065万元的基础上,达到优化节省资金10%的目标。

关键词:后张法;摩擦系数;钢筋内缩值;柱顶变位

Research on deformation control and adjustment technology of large-span and high-precision fair faced concrete wind tunnel by post tensioned prestressing

Mingxue Yang¹, Yaoming Geng², Yahui Bai²

1. China Aerodynamic Research and Development Center Mianyang 621000, Sichuan

2. Tongji University Architectural Design and Research Institute Group Co., Ltd. Shanghai 200000

Abstract: Because the deformation control requirements of large-scale low-speed wind tunnel structures are much higher than the deflection limit of general concrete components, conventional design measures and construction methods can hardly guarantee such high completion accuracy. To ensure the reliability of project design methods and the feasibility of construction, and take into account the investment costs at the same time. We conduct structural model experiments to guide follow-up design and construction. The experiments takes the stable section of the largest wind tunnel span as the research object, and the test model of original size is made. The post-tensioning prestress method is used to control and adjust the deformation of the large-span high-precision general concrete tunnel body. After the comprehensive inspection on the spot, we find that the measured deformation at each measuring point is very close to the theoretical calculation value of the structure, and is far less than the limit figure, the result satisfies the index requirements of the wind tunnel with high precision. The model is made of steel structure core support system, so its strength, deformation and overall stability meet the test precision requirements. Technical solutions such as mold frame support will continue to be optimized, and efforts will be made to achieve the goal of optimizing the savings of 10% of the funds on the basis of 30.65 million yuan planned for the construction measures of the project.

Keywords: Post-tensioning; Friction coefficient; Rebar shrinkage; Displacement of column top

作者简介:杨明学,男,1978年7月出生,重庆市巫溪县人,高级工程师,重庆大学工学学士,工作单位:中国空 气动力发展与研究中心,研究方向:建筑施工。

引言:

大型低速风洞项目是《国家重大科技基础设施建设 中长期规划(2012-2030年)》中的重点项目,洞体内型 面指标精度远超现行国家清水混凝土标准,尤其是洞体 顶板精度控制难度极高。由于混凝土结构理论计算与实际 存在客观偏差,设计难以精确预测构件变形程度,采用非 常规设计方案势在必行。由于洞体内型面具有高精度和大 跨度的特点,对模架支撑体系提出了极高要求,支撑体系 的强度刚度、变形控制是影响洞体型面精度的关键施工技 术保障环节,采用非常规的模架支撑体系势在必然。

经优化,确定风洞底板和侧墙采用现浇清水混凝土, 顶板构件采用后张法预应力混凝土设计方案。虽然预应 力设计技术在大跨度桥梁领域已成熟运用,但洞体结构 的变形控制和精度要求有别于桥梁,当前风洞领域,国 际国内还从未有后张法预应力技术调节洞体变形的先例。 为控制技术风险,开展洞体后张法预应力技术研究具有 重大现实意义。

试验研究技术主要有四个方面:一是研究与验证预 应力作用对混凝土结构变形的控制与调节作用,明确张 拉力与梁挠度的量化关系。二是验证预应力结构的计算 分析、数值模拟结果,总结设计理论计算与实际值之间 的对应关系。三是量化构件起拱程度,以便综合考虑起 拱和预应力控制效果。四是验证钢结构模架体系的可靠 性能否满足现浇成型质量的精度要求,为后续施工提供 经验参数。

- 1 试验研究模型设计
- 1.1模型设计方案

试验模型设计如图1,模型柱距、跨度、高度 尺寸分别为10.5m×24.5m×6.5m。4个框架柱截面为 700×2500mm,框架柱间设置500mm厚钢筋混凝土侧墙。 2根预应力主梁跨度24.5m,截面尺寸700×2500mm,框 架梁间5道次梁截面400×1700mm,顶板250mm厚。梁 板柱墙采用C40混凝土。

2 试验研究检测方案

2.1 研究测试内容

预应力梁、柱构件测试主要有6个方面:一是预应 力筋与孔道之间的摩擦系数;二是锚具变形和钢筋内缩 值;三是柱顶变位与梁挠度值;四是梁跨中与支座截面 的截面应变分布;五是锚固区和梁柱预拉区的裂缝观测; 六是模架体系位移与变形测试。

通过第一、二项测试可得到预应力的摩擦和锚固损 失,从而获得实际有效预应力,确保预应力计算值和实 际值一致;第三项测试,可获得张拉预应力与梁柱变形 关系,综合确定构件变形和预应力控制效果;第四项测 试,可与设计计算的结果进行对比,以验证设计计算的 正确性;第五项测试,可防止锚固区局压破坏和预应力 过大引起预拉区裂缝。第六项测试,可全面验证模架支 撑体系的可靠性。

2.2构件测试方法

1.摩擦系数

选择6束预应力钢绞线进行测试,每根梁3束,如 图2。每孔钢绞线有效预应力测试共分为5级,分别为 435kN、868kN、1300kN、1735 kN和2175kN,相应钢铰 线应力0.2σ_{con}、0.4σ_{con}、0.6σ_{con}、0.8σ_{con}和1.0σ_{con},每 级分别测读主动端力和被动端力。通过精密钢尺直接测 定法测试钢绞线的张拉伸长值,通过力传感器法测试张 拉主动端、被动端力,传感器安装如图3。按照现行国家 《混凝土结构设计规范》(GB 50010-2010)规定的计算 公式,计算出实际摩擦的系数,从而获取有效预应力。

图2 摩擦损失孔位

Fig.2 Friction loss hole position

图3 传感器安装 Fig.3 Sensor installation

2. 锚具变形和钢筋内缩值

选择同摩擦系数孔位的6个锚具,锚具变形和钢筋 内缩值采用直接法测试,张拉钢绞线达到设计控制力时 持荷片刻,伸长稳定后记录预应力筋在锚垫板外长度l₁、 预应力筋在张拉端锚具与工具锚之间的长度l_i,千斤顶回 油至完全放松时记录预应力筋在锚具外的长度l₂。按规 范公式获得钢筋内缩值和锚具变形值a。

$$\Delta l = \frac{N_{\rm con} l_i}{E_{\rm p} A_{\rm p}} , \quad a = l_1 - l_2 - \Delta l$$

3. 柱顶变位和梁的挠度值

柱侧移和梁挠度为本次重点测试内容,以校核张拉 预应力对变形的控制与调整作用以及确定梁变形是否达 到设计要求。挠度测试采用静力水准仪,柱变位测试采 用水平倾角探头,通过测量柱转角来计算其侧移。每根 预应力框架梁顶设置5个挠度测点,2根主梁共10个测点; 每个框架柱设置1个侧移测点,4根框架柱共4个测点, 如图4。

图4 梁挠度和柱顶变位布置图

Fig.4 Beam deflection and column top displacement layout

试验第一阶段先张拉南侧梁、后张拉北侧梁,每张 拉0.2σ_{con}为一个工况,张拉4束钢绞线。张拉完成后每 30分钟自动测读数据一次。然后开始拆除模板,试验第 二阶段先张拉北侧梁、后张拉南侧剩余的4束预应力钢 绞线;试验第三阶段,做注水加载实验,在中间四个梁 格内注入1m深的水,持荷7小时监测;注水试验完成后 卸水,进入第四阶段长期观测状态。

4.应变测试

对梁、柱应变测试,可分析构件受力状况,可与设 计指标相比较。采用高灵敏、高精度、高稳定性的内置 式振弦应变传感器测试。在每根预应力梁端、跨中布置 3个测面,每测面6个测点,2根梁共设36个测点;在 4根柱顶、柱底外侧布置应变测面,每柱布置2个侧面, 每个测面2个测点,共16个测点。如图5(图中圆点代 表梁柱截面应变布置点)。应变测试过程和工况与挠度 相同。

图3 未/ 性应支例风仰直图

Fig.5 Beam and column strain test layout

5.裂缝观测

试验对2根预应力梁的4个锚固区进行观测,同时对 张拉过程中可能产生裂缝的部位,如跨中梁顶、支座梁 底、柱外侧等部位进行观测。采用ZBL-F800电子裂缝观 测仪观测裂缝。

6.钢结构模架支撑体系测试

模架内核支撑体系材质为Q345B低碳合金钢,主要由矩形中空格构柱(RHS100×10mm)、H型钢柱(梁)(HW350×350×12×19mm)、圆钢拉杆(PD219×10mm)、钢模板(2000×2000×10mm)组成。 共设置60个位移计用于监测顶模和侧模的位移,设置25个应变片监测格构柱、拉杆斜撑和顶板的应变,如图6。

图6 模架体系监测布置图

Fig.6 Monitor layout of die-frame system

3 试验研究结果分析

3.1 摩擦系数

表1 摩擦系数测试

Table 1 Friction coefficient test

β/rad	u	σ_{pe}^t/MPa	σ^{c}_{pe} /MPa
0.2056	0.59	1103	1183
0.1640	0.50	1147	1195
0.1435	0.62	1139	1201
0.2056	0.61	1098	1183
0.1640	0.71	1108	1195
0.1435	0.51	1157	1201

测试结果见表1,试验研究测试的6束预应力钢绞线 与孔道之间的摩擦系数u_{max}=0.71,u_{min}=0.51,u_{avg}=0.59均 大于《混凝土结构设计规范》(GB50010-2010)中理论 建议值u=0.25。

3.2锚具变形和钢筋内缩值

表2 锚具变形和钢筋内缩值测试

Table 2 Test the deformation of anchor and rebar shrinkage

L1/mm	Li/mm	L2/mm	∆l/mm	a/mm
886.70	523.07	877.13	3.60	5.97
816.63	523.20	809.67	3.60	3.37
849.20	521.53	839.17	3.60	6.43
900.07	520.40	891.17	3.60	5.30
892.23	523.57	883.57	3.60	5.07
813.83	526.93	805.73	3.60	4.50

测试结果见表2,试验研究测试的6组锚具变形和钢筋内缩值a_{avg}=5.1mm,规范建议值a=5.0 mm。实测值与规范建议值基本一致。

3.3柱顶变位和梁的挠度值

图7 柱顶转角图

Fig.7 The pillars around the corner

柱顶转角测试如图7,测试结果为:张拉4束预应力 钢绞线,引起柱顶转角约为0.05度,对应引起柱顶最大 侧移1.5mm。张拉8束时引起柱顶最大侧移2.5mm。

表3 梁挠度测试

Table 3 Beam deflection test

Operation contion	Mid–span Y/mm	
Dead load	-3.2 (N), -3.8 (S)	
Tension bar4	0.9 (N), 0.9 (S)	
Tensionbar4+Die-load	-3.18 (N), -2.1 (S)	
Tensionbar8+Die-load	-2.5 (N), -1.7 (S)	
Water injection	-1.5 (N), -1.8 (S)	
Instrutions -: antiarch,		

测试结果见表3,测试张拉4束预应力钢绞线,梁跨 中起拱约为0.9mm;模架主支撑被拆除后,梁体明显下 挠, 跨中下挠约3.2~3.8 mm。张拉注水实验中, 梁下挠约1.5~1.8mm, 卸水后梁体基本恢复原状。

张拉前4束预应力+自重工况下,跨中测点下挠 2.1~3.18 mm,平均挠度值为2.64mm。

张拉8束预应力筋+自重工况下,跨中测点下挠 1.7~2.5mm,平均挠度值为2.1mm。

3.4应变测试

表4 应变测试

Table 4 Friction coefficient test

Operation contion	Mid–span/uɛ	Telos/uɛ
Tensionbar4+Die–load	-100 (T), -100 (D)	-200 (T), -100 (D)
Tensionbar8+Die–load	–200 (T), –200 (D)	-400 (T), -150 (D)
Water injection	-100 (T), -30 (D)	-47 (T), -38 (D)
Frame column	100 (4), 250 (8)	

张拉前4束预应力+自重工况下: 跨中测面顶部测 点实测应变为-100 uε, 计算应变为-142 uε; 跨中测面底 部测点实测应变-100 uε, 计算应变-52 uε。端部测面顶 部测点实测应变-200 uε, 计算应变-143uε; 端部测面底 部测点实测应变-100 uε, 计算应变-119uε。

张拉前8束预应力+自重工况下: 跨中测面顶部测 点实测应变为-200 uε, 计算应变为-166 uε; 跨中测面 底部测点实测应变为-200 uε, 计算应变为-127 uε。端 部测面顶部测点实测应变为-400uε, 计算应变为-404 uε; 端部测面底部测点实测应变为-150 uε, 计算应变 为-131uε。

张拉前4束预应力+自重工况下,柱顶测面外侧测 点实测应变为100 uε,计算应变为102uε;张拉前8束预 应力+自重工况下,柱顶测面外侧测点实测应变为250 uε,计算应变为205uε。

3.5裂缝测试

经观察,张拉过程和拆模后,跨中梁顶和梁底、支 座梁顶和梁底以及柱内外侧均未观测到裂缝。

北侧梁的东侧锚固区最下面一个垫板处,在预应力 筋全部张拉完毕后发现了两条较为明显的裂缝,裂缝自 垫板角部开始,以45°角延伸至梁边缘直至梁侧面,裂 缝宽度约为0.15mm。

3.6钢结构模架支撑体系

浇筑前使用沙袋加载模拟混凝土荷载,主梁荷载 43.75kN/m,次梁载荷为17kN/m,楼板载荷为0.5kN/ m²。按试验方案荷载的50%P、100%P两级加荷和卸荷, 持荷2小时。待结构变形稳定后监测位移和应变值。模 板位移最大偏差2.2mm,支撑体系一级加载最大应变55 uε,二级加载最大应变470uε,模架支撑处于弹性状态, 浇筑砼后持续观测。经实体最终质量检查,洞体内型面 平整度、垂直度、轴线偏差、阶差等各项指标满足设计 精度要求。

3.7后期徐变变形观测

按计划对试验梁柱构件开展为期2年的后期徐变变 形长效观测。柱侧移和梁挠度在一天内随温度影响波动, 跨中挠度测点变化值约0.7~1.0mm,最不利情况下其变形 仍满足限值要求。梁、柱应变在一天内随温度影响波动, 最大波动范围约150 uɛ,温度影响下梁各测点均受压。

4 试验研究结论

1.实际摩擦系数比规范建议值偏大0.34,实际有效 预应力比按规范计算的有效预应力偏小约2.6%。实际 锚具变形和钢筋内缩值与规范建议值基本一致,采用 规范建议值设计。建议将张拉控制应力由0.70f_{ptk}提高至 0.72f_{ptk},提高后实际有效预应力与原设计有效预应力偏 差控制在1%以内。

2.根据柱侧移和梁挠度测试数据分布图,实测挠度 与计算挠度两者较为接近,增减趋势基本相符。

张拉前4束预应力+自重工况下,跨中测点实测挠 度平均值为2.64mm,计算挠度为2.89mm;1/4跨测点实 测挠度均值为2.39mm,计算挠度为2.28mm,实测值均接 近于计算值,且远小于挠度限值10mm,已达到本次试验 挠度控制要求。

张拉8束预应力筋+自重工况下,跨中测点实测挠 度均值为2.10mm,计算挠度为2.28mm; 1/4跨测点实测 挠度均值为2.35mm,计算挠度为2.29mm,可见实测挠度 相比张拉前4束预应力+自重工况下又有所减少,且均与 计算值较为接近。

3.根据应变测试结果,实测应变与计算应变较为接 近,增减趋势基本相符。张拉4束预应力+自重工况下, 各测面测点均处于受压状态,跨中截面接近轴心受压, 梁体处于弹性状态。张拉8束预应力+自重工况下,各测 点压应变进一步增大,梁体仍处于弹性状态。

4.根据锚固区和梁柱受拉区裂缝观测,跨中梁顶和 梁底、支座梁顶梁底以及柱内外侧均未发现裂缝,与应 变测试结果相符,即梁体基本处于受压弹性状态,无裂 缝产生。北侧梁东侧锚固区观测到两条裂缝,经分析为 局压裂缝,后续优化锚固端设计,并加强混凝土浇筑质 量控制。

5.综合变形和挠度测试结果,实测变形与计算值十 分接近,且远小于限值,可见设计计算模型可行,满足 风洞工程的精度要求。利用预应力的反拱作用可减少约 40%的自重变形。预应力筋作用使得混凝土梁各截面均 受压,梁始终保持弹性状态,确保变形精度控制。

6.现行模架支撑体系技术方案可靠,刚度大、变形 小,结合现场安拆情况,可优化方案,进一步降低建造 措施成本。

参考文献:

[1]GENG Y M, BAI Y H, WU B, Study on large low speed wind tunnel and deformation control of the tunnel [R]. China, 2018.9–52.

耿耀明,白亚辉,吴彪.大型低速风洞设计与洞体变 形控制研究[R],中国,2018.9-52.