

10kV配电带电作业机器人绝缘防护设计

黄永万

国网福建省电力有限公司福州市长乐区供电公司 福建福州 350000

【摘 要】随着现代化城市的建设和电力系统的不断发展,10kV配电带电作业机器人的研发与应用已成为电力领域的重要课题。作为电力系统维护的重要手段,机器人的设计必须充分考虑绝缘防护,以确保操作人员和设备的安全。本文将围绕10kV配电带电作业机器人的绝缘防护设计展开研究,旨在为提升电力系统维护效率和安全性做出贡献。

【关键词】10kV;配电带电;作业机器人;绝缘防护设计

1 高压带电作业机器人总体设计

10 kV配电网带电机器人为研究对象,对其在高压下工 作时的安全、可靠运行问题进行了如下分析,从机器人的 结构设计出发,利用高性能工程塑料、复合材料等高绝缘 材料,保证机器人在与高压电压设备的直接或间接接触过 程中, 实现对机器人的安全防护。其次, 在机器人及操作 器的设计上,也要做好绝缘处理,或在工作时涂上一层绝 缘体,以保证在工作时有安全的距离,并有一定的绝缘防 护。为了避免在外部高压电压的作用下, 机器人的内部电 路会出现短路、过载、漏电流等多层次的保护。另外,要 求机器人具有较强的抗干扰性,能够在复杂电磁环境下下 作,保证作业命令的正确执行。智能感知与导航系统是保 证带电作业机器人高效、精确作业的关键。通过集成高精 度传感器和先进的图像处理技术, 机器人能实时监测作业 环境,并准确识别操作目标,自动规划作业路径,避免潜 在的安全风险。因此,保证10 kV配电网带电机器人的绝缘 保护设计是保证10 kV配电网安全高效运行的前提,要利用 高性能绝缘材料,引入多阶段电气防护方案,并结合智能 传感与导航技术, 使其能够在复杂高压环境下平稳工作, 为电网检修提供有力支撑。

2 机器人常见的绝缘防护措施

2.1 高性能绝缘材料的应用

在高压电网中,尤其是在带电作业的机器人中,选择与应用高性能的绝缘材料显得尤为重要。这种材料不仅要具备优良的电气绝缘性能,而且还要能承受高温、高湿度、高化学介质等苛刻的工作条件。其主要应用于工程塑料,

硅橡胶,聚酰亚胺薄膜等。工程塑料,如聚酰亚胺和聚醚 醚酮(PEEK),因其卓越的绝缘性能、机械强度和耐温特 性,被广泛应用于机器人的外壳和内部结构件中。硅橡胶 具有良好的弹性、耐高温性能,可作为密封、缓冲部件使 用,保证机器人在各种复杂运动状态下的绝缘保护。而聚 酰亚胺膜具有优异的电绝缘及耐化学腐蚀特性,广泛应用 于电绝缘中,可大幅提升带电作业机器人在高压环境中的 安全与可靠度。通过对材料的精心挑选与设计,使机器人 在各种工况下均能保持良好的工作状态,从而有效地防止 由于绝缘失效所引起的电气故障或安全事故,确保工作效 率及工人的人身安全。所以,采用高性能的隔热材料对机 器人的设计和制作是必不可少的。

2.2 多级电气保护策略

为了实现多层次的安全防护,降低故障概率,保证机器 人自身及作业环境的安全性,对高压带电作业机器人的设 计具有重要意义。控制方案一般包含短路保护、过载保护 和漏电保护等多个级别,每个级别都有对应的保护方法。 采用断路器、熔断器等装置,在探测到短路时,及时断 电,避免过大的电流对机器人的内部线路造成损坏。过载 保护则通过电流监测装置实时监控电流大小,一旦超过安 全阈值,自动减少负载或切断电源,避免因过载运行而引 起的电气部件过热或损坏。漏电保护装置能够在发生漏电 情况时迅速作出反应,断开电路,保障操作人员和机器人 的安全。通过上述多层次的安全防护,使高压带电操作机 器人在遭遇安全隐患的情况下,实现自身的安全防护,避 免事故的进一步扩大,保证操作的连续性和稳定性。这种

多级电气保护策略是机器人设计中的一个重要环节,体现 了现代机器人技术对安全性能的高度重视。

2.3 智能感知与避障技术

在高压带电作业中,实现对环境的感知、辨识障碍、自主规划作业路径,是实现高压带电作业机器人安全作业的核心技术。该项技术的核心是利用高精度的传感器与算法,如激光雷达、视觉摄像头、超声波、红外等。通过传感器,机器人能够获得周边环境的详细信息,如障碍物的位置、大小和形状,以及作业区域的具体布局。随后,借助复杂的数据处理和图像识别技术,机器人能够识别和分类这些信息,实时更新自身的位置和环境地图。当机器人探测到前方有可能存在的障碍物时,利用内置算法计算出避障路线,并能自主地调整前进方向或作业方式,以达到规避障碍物的目的。除此之外,该技术还能让机器人对突发事件作出迅速的反应,例如立刻停下行为,或者为了保护自身和身边的人而采取安全行动。通过采用智能传感及障碍规避等方法,实现高压带电机器人在复杂变化环境下的自主、安全运行,实现高精度、高效率地作业。

3 机器人绝缘与电气隔离设计

3.1 绝缘设计

在机器人绝缘设计中,特别是带电操作时,必须选择适当的材料与结构,避免电流直接或间接地流动到预先设定的路径上。同时,为了保证其在工程塑料、硅橡胶、聚酰亚胺等绝缘材料上的应用,还需要对机器人各个部分进行精确设计,使其具有最佳的使用价值。同时,对机器人的绝缘结构进行了合理的设计,并对其进行了优化,以保证其在高压下的绝缘性能。在此基础上,综合考虑温度、湿度、化学成分等因素对绝缘性能的影响,通过对不同环境因子的综合评价,提出相应的应对措施,例如采用防潮、耐腐蚀等方法来提高绝缘层的服役寿命,保证其长期稳定运行。

3.2 电气隔离设计

电气绝缘设计是一个非常重要的研究内容,其目的是 通过物理方法或电路设计,使各部分独立运行,避免发生 故障,提高系统的安全可靠性。这涉及使用绝缘变压器, 光电耦合器,隔离放大器,在电源,信号传输,控制系统 之间形成一道安全的壁垒。电气电绝缘结构,既可避免高压、电流脉动等对机械敏感元件造成损伤,又可有效隔离接地回路及电磁干扰,确保信号正确传送与处理。另外,通过特殊的隔离模块,当系统发生故障时,能够迅速地将相关部件断开,从而避免了故障的蔓延,从而提升了机器人的安全性。

3.3 带电作业中易忽视的危险点

在带电作业中,除了直接触电的显著危险外,还存在一些容易被忽视的危险点。首先,电磁场的影响是一个重要因素,长时间或高强度的电磁场暴露可能对机器人的控制系统造成干扰,影响其稳定性和可靠性。其次,高压电弧的产生可能导致突发性的高温和强光,对机器人的传感器和表面材料造成损害。另外,由于带电作业环境复杂,机器人周边可能存在易燃易爆物质,如油气或粉尘,这些物质在特定条件下可能被电气设备引燃,造成严重事故。因此,在设计和操作带电作业机器人时,除了重视直接的电气安全措施外,还需充分考虑这些潜在的危险点,采取相应的预防和保护措施。

4 提高机器人绝缘防护措施

4.1 提高配电设备装备技术水平

为了保证机器人的绝缘保护效果,必须提高其设备的技术水平。首先,通过使用高性能的工程塑料、硅橡胶、聚酰亚胺等新型绝缘材料与工艺,有效提高装备在恶劣环境中的耐久性能。其次,利用智能感知与自诊断技术,实现对电网绝缘状态与电气安全的实时监测,并对隐患进行预警。在此基础上,在配电网的设计与制作中,还需注重对绝缘结构进行优化,通过合理布置绝缘间隙、提升绝缘构件几何稳定性等措施,降低电应力集中,提升系统整体绝缘性能。同时,利用绝缘变压器、光电耦合器等先进的电绝缘技术,将各电器元件间的直接连接隔离开来,减少了发生故障的概率。同时,对新技术(如纳米绝缘、复合材料等)的持续更新与应用,将进一步提升配电网的技术水平,增强其在高压下的工作能力与安全性能。从而提高配电网运行的稳定可靠度,为机器人的工作提供更好的保障。

4.2 提高配电人员的专业水平

为了保证机器人的绝缘保护措施能够得到有效的执

行,必须加强电力系统员工的专业素质。首先,配电网操 作员应经过专门的培训,对供电系统的工作原理、绝缘保 护和有关的安全规范有较深地了解。其中包含当前的电气 配送技术, 绝缘材料的特性和使用时的注意事项。其次, 配电网员工要有较强的安全观念,工作认真负责。透过日 常的安全教育及应急处置演习,提升员工辨识及处理可能 发生之危险的技能。同时,也鼓励配电员工参加安全技术 交流会,交流实践中的心得体会、事例,不断更新自己的 专业知识,提高自身的水平。另外,对于电力系统中的电 气设备, 如绝缘电阻测试仪、红外线热像仪等, 也要具备 良好的电气性能,才能对电气设备的绝缘状况进行监测与 故障诊断。通过定期的设备检查和维护,及时发现和解决 绝缘能力降低的问题,确保电力系统的稳定运行,通过提 升配电人员的专业水平和技能,不仅可以有效执行和维护 机器人绝缘防护措施,还能提高整个电力系统的安全性和 可靠性。

4.3 完善安全生产制度规范体系

完善安全生产制度规范体系是保障高压带电作业机器人 安全运行的基础。首先,企业或组织需要根据国家标准和 行业指导原则,结合自身的实际情况,制定一套全面、细 致的安全生产管理规范。这套规范应涵盖从机器人设计、 制造、测试到现场作业的全过程, 明确每个阶段的安全要 求和操作标准。其次,在企业的安全管理制度与标准系统 中,应当包括对员工的安全教育与培训方案。定期组织安 全常识及作业技能演练,提升员工之安全意识与应急技 巧。另外,要建立完善的事故防范与紧急反应机制,制订 专门的事故处置程序与计划,以保证一旦出现安全事件, 可以快速、高效地处置。同时, 也要重视企业的安全生产 管理体制与标准体系, 注重企业的不断改善与科技创新。 通过对生产过程中存在的隐患进行定期检测与风险评价, 及时发现并消除生产中存在的隐患,促进企业的安全技术 与管理手段的不断优化与提升。通过这些措施,构建一个 全面、高效、可持续发展的安全生产管理体系,为机器人 的安全作业提供坚实保障。

4.4 加强机器人专用绝缘工具的开发及应用

加强机器人专用绝缘工具的开发及应用是提高带电作业 安全性和效率的关键。专用的绝缘工具能够保障机器人在 高压环境中进行操作时的安全性,防止意外触电和电气故 障的发生。首先,开发工具时需要选用优质的绝缘材料, 并基于机器人作业的具体需求,设计工具的形状、尺寸和 操作方式,以满足不同作业环境的需求。在开发绝缘工具 时,不仅要具备隔热性能,还要注意其耐用性、操作灵活 性及维修方便性。利用先进的材料制备工艺及结构设计方 法,提升工具的力学强度及抗外界冲击性能,以保证其在 复杂工作环境下的稳定工作。今后,要通过深入研究多学 科交叉,将智能传感与无线通信等先进技术相结合,实现 对绝缘工具的实时监控与数据传递,为工作人员提供更为 准确、实时的工作信息。通过这些先进技术的应用,不仅 可以提升绝缘工具的性能,还能进一步提升作业的安全性 和智能化水平,通过加强机器人专用绝缘工具的开发及应 用,可以有效提高带电作业的安全性和效率,为高压电力 系统的维护和修复工作提供有力支持。

5 结束语

通过对10kV配电带电作业机器人绝缘防护设计的研究,不仅深入理解了电力系统维护中的安全挑战,也为解决这些挑战提供了创新的解决方案。未来,随着科技的不断进步和应用的推广,相信机器人在电力系统维护中的角色将变得更加重要。将继续致力于研究和开发更加安全、高效的机器人技术,为电力领域的发展贡献力量。

参考文献:

[1] 辛洪杰. 10kV配电线路带电抢修作业机器人实用化研究[J]. 科技创新与应用, 2016 (04): 205.

[2] 庄泽明. 10kV配电带电作业机器人绝缘防护设计[J]. 河南科技. 2013 (14): 59-60.

[3] 李健, 鲁守银, 李运厂, 赵玉良. 10kV配电线路带电抢修作业机器人实用化研究[A] 山东电机工程学会2012年度学术年会论文集[C]. 山东电机工程学会, 山东省科学技术协会, 2012: 1.