

高速公路路基下沉问题及解决方案浅析

赵新刚

中交二公局第四工程有限公司 河南洛阳 471000

【摘 要】随着我国城市建设的不断发展,高速公路作为市政工程重要的基础设施得到了长足的提高。但公路地基土的不均沉降等问题依然严重影响着建筑物安全。在高速公路中,尤其是与桥梁连接处和边坡中遇到的地基沉降问题如何妥善处理,已经成为高速公路工程施工能否顺利进行的关键。为更好的适应发展的需要,本文将对高速公路路基下沉问题及解决方案做简要论述。

【关键词】高速公路; 路基下沉; 工程管理

引言

高速公路在现代交通系统中扮演着至关重要的角色,它不仅是连接城市与乡村的重要纽带,更是经济发展的重要支撑。然而,随着交通流量的不断增加以及长期的自然和人为影响,高速公路路基下沉问题日益突出。路基下沉不仅会影响道路的使用寿命,还会对交通安全构成严重威胁^[1-6]。本文将围绕高速公路路基下沉问题,分析其成因机理,并探讨相应的监测和解决方案,以期为相关工程实践提供参考和借鉴。

1 高速公路沉降机理分析

1.1 台背地基变形机理

沟壑地区的路基是发生变形的重点区域,这是因为那里的土壤压缩性强、地基坚固但含水量和孔隙率较高,因此易于发生显著变形。同时桥头路段的路基填筑高度通常会比普通路段高出5-10厘米,这部分较高的路基会对地基施加额外的应力,最终导致地基下沉[7]。

1.2 路堤变形机理

在道路施工过程中,粘性土常作为台背回填材料广泛使用。高速公路路堤变形机理主要受以下三个因素影响:首先,土壤类型和含水量是关键因素。粘性土的压实效果直接受到含水量的影响,水分不足会导致地基沉降不均。其次,施工工艺的完善程度也是关键因素,施工中未达到理想含水量会影响路堤的稳定性。第三,车辆荷载和自重对路堤的变形产生显著影响,特别是在粘性土与混凝土桥台刚性差异的情况下,容易引发差异沉降。最后,地形和地质条件的复杂性对路堤稳定性和变形特性有显著影响。

1.3 桥头搭板变形机理

地基土质的松软或存在松软层是导致沉降的主要原因 之一。在这种情况下,靠近桥台的土体所受的应力较小, 远离桥台的土体所受的应力较大,形成不均匀的受力情 况。桥梁在承受上部结构荷载时,地基土体容易发生压缩 变形,进而引发搭板沉降。其次,地下水的渗流或涌出会 削弱地基土体的强度,导致承载力下降,增加沉降风险。 当汽车驶过搭板末端时,路基所受的纵向应力达到最大, 导致明显的塑性变形,进而引起搭板末端过度沉降。车辆 荷载的动态作用和长期使用过程中反复荷载的作用,加剧 了沉降问题。在桥台附近,路基与桥梁的差异沉降更为显 著,导致路面不平整和裂缝等病害。

2 高速公路沉降段监测方案

根据设计和规范要求,观测的主要内容包括填方段的基底沉降、水平位移、路基沉降以及涵洞和路堤过渡段的沉降。以下是详细的观测断面设置方案:

2.1 高速公路边坡沉降监测

2.1.1 位移桩

一般路堤地段观测断面包括沉降位移桩和沉降板,沉降位移桩每断面设置3个,布置于双线路基中心及左右线中心两侧各2m处,位移桩采用C20钢筋混凝土预制桩,桩长 50cm,埋深深度应不小于40cm 桩顶外漏10cm,位移桩中钢筋超出预2cm为宜,整个钢筋长度为40cm钢筋顶磨平并有十字。

位移桩采取在小型预制场进行预制集中预制,预制完成 后拉入施工现场进行预埋,开挖埋置时应注意桩周围回填 土夯实,并在桩顶20cm段用C20砼浇筑确保稳定性。

2.1.2 测斜管

测斜管的安装支架由滑轮组、钢丝绳和三脚架组成。在 测斜管的端部安装导向滑轮,并将钢丝绳一端固定在三脚架的固定环上。钢丝绳通过导向滑轮绕到绕线滑轮上,绕 线滑轮设有锁定装置,可控制钢丝绳的收放。

在测斜管端部安装导向滑轮,将钢丝绳一端固定在三脚架的固定环上,并通过导向滑轮绕到绕线滑轮上。绕线滑轮设有锁定装置,可控制钢丝绳的收放。当拨开锁定装置上齿轮与卡扣的接触后,顺时针旋转绕线滑轮放松钢丝绳,使测斜管逐渐下放到测斜孔中。每下放一段测斜管后,通过拨动锁定装置上的卡扣,使卡扣与齿轮接触,锁定绕线滑轮,使测斜管悬停。然后在接管部位用螺丝固定下一节测斜管,再次拨开锁定装置上的卡扣,继续下放钢丝绳,重复此过程直至多节测斜管连接完成。当

测斜管下放到孔底后,打开固定在三脚架上的钢丝绳,逆时针转动绕线盘收紧钢丝绳,使其盘绕在绕线滑轮上,并从测斜孔中抽出钢丝绳,从而完成测斜管的安装工作。这样的方法确保了测斜管的安全和精准安装。

测斜管安装完成后,需要进行孔壁回填以确保其稳固性和测量的准确性。准备粒径适中的干净砂土作为回填材料,避免大块石块或杂质影响测量精度。回填时应分层进行,每层厚度控制在20至30厘米,并逐层夯实,确保材料与孔壁及测斜管的紧密接触。过程中随时检查回填效果,确保密实度和均匀性,及时补充和调整空隙。最后一层回填材料应略高出地面,并进行平整处理,以确保不受外界因素影响。

2.2 高速公路地基沉降监测

2.2.1 观测断面设置

每段软土路基布设一至两个断面,软土路段长度大于 150m时布设两个断面,当小于150m时,布设一个断面。填 土过程中,沉降板的沉降速率大于控制标准,立即停止填 土,增加水平位移桩测设断面数量,及时对沉降速率超标 段进行处理。

2. 2. 2 沉降板

沉降板在填土前埋设; 沉降板用8mm×500mm×500mm的 钢板焊接 Φ 40的测杆而成, 测杆外套PVC管保护, 测杆和套管每节长1.0米, 随填土的升高而加长。沉降板底槽应平整, 其下铺设60cmX60cmX20cm的砂垫层。沉降板的金属测杆、套管和接驳的垂直偏差率应不大于1.5%。随着沉降板下沉和填土的高度, 测杆与套管相应接高, 每节长度不宜

超过50cm。接高后的测杆顶面应略高于套管上口,套管上口应加盖封住管口,盖顶高出碾压面高度50cm。

2.2.3 边桩

位移边桩埋设在路堤两侧趾部,其中一根位于坡脚处,另一根位于排水沟外侧。边桩采用12cmX12cm混凝土预制方桩采用C25混凝土,埋深为1.4m。在边桩顶部应预埋不易损坏的金属测头。边桩采用打入法埋设。此外,位移边桩应做好标记并编号。

3 沉降段结构稳固解决方案

3.1 与桥梁连接沉降段稳固方案

3.1.1 搭板的施工技术

搭板的设置方法多种多样,常见的包括混凝土搭板技术等。最关键的是确定并选择最佳长度,之后进行浇筑或填筑。对于道路桥梁工程,需要选择使其与路基面层顶面保持平行的最优搭板长度。由于车辆荷载可能导致道路和桥梁出现裂缝等问题,这对施工提出了更高要求。

为了确保道路桥梁的整体稳定性和耐久性,搭板设置需要仔细考量。搭板顶面必须与路基路面的顶面平行,同时还需要与正常路段的路基顶面标高一致。这样可以保证桥梁底层与搭板顶面的协调一致,避免出现路面不平整的问题。此外,解决路基与桥梁之间的过渡问题也可以提升行车的舒适性和安全性。这种设置不仅能有效减少差异沉降,还能防止路面裂缝的出现,确保道路的稳定性和耐用性。

3.1.2 桥台软基填筑技术

处理软土地基和地面上的路堤时,需要采用适当的填筑 技术并设置不同强度的沉降段,以应对已经发生的压缩变 形。在桥梁引道过程中,结合填筑材料和方法,能够有效 减轻地基沉降和压缩变形。当前,国内常用方法有换填土 处理、密实加固方法、孔内深层强夯法、管桩加固方法、 水泥喷桩复合地基技术等。其中水泥喷桩复合地基技术在 软土层地基加固方面展现出卓越的效果。不仅能显著提高 地基的承载能力和稳定性,还能有效减少地基沉降和变 形。同时,这种方法还具备高效施工的优势,能够大大缩 短工期,加快工程进度。通过科学合理的施工方案,可以 提升软土地基的稳定性和承载能力,确保公路和桥梁的长 期安全运行。

在选择桥台路基施工方案时,应根据具体情况进行调整,尽量消除软土路基的不均匀沉降。特别是在桥台地区

应进行长期预压,以提高地基的承载力和稳定性,从而提升工程的施工效率,并减少后期的修补工作。

3.1.3 路基排水技术

路基排水技术与当地气候条件密切相关。对于降雨量较 大且潮湿多雨的地区,排水施工尤为关键。若排水不良, 频繁降雨会大幅加剧公路桥梁的沉降问题,进而引发诸如 路基坍塌、翻浆,沥青路面松散、剥落和龟裂,甚至水泥 混凝土路面断裂等一系列病害。为了防止这些问题,必须 在具体施工中采取有效的排水措施。其作用是将可能停滞 在路基范围内的地面水迅速排除,阻止路基范围内的地面 水流入路基内,主要分为边沟、截水沟、排水沟、跌水与 急流槽、拦水带、蒸发地等设施。此外,使用浆砌片石和 混凝土预制板加固沟渠,可以进一步提升排水系统的稳定 性。对于水位较高且不便直接填筑台背路堤的施工点,采 用碎石盲沟设计是一种有效的解决方案。这些措施共同作 用,能显著提升地基的稳定性和公路桥梁的耐久性。

3.2 公路边坡沉降稳固方案

坡面防护治理通常使用加固材料如混凝土、钢筋网或 土工织物来稳定坡面,这些材料能有效防止边坡滑动和 侵蚀。

修坡基坑开挖作业用挖掘机,对挖掘后的边坡需用人工进行修整,在坡上每20m左右吊线控制面角,在处理上层滞水或土层分界处时,关键措施是每隔1.5至2米在坡面插放一个塑料泄水管。这些泄水管能够有效疏导滞水,从而防止水分累积导致边坡不稳定。这些步骤不仅维护了边坡的稳定性,还防止了因水分影响引起的滑移或塌陷问题。坑深每增加1m,边坡外放0.9m,确保边坡的立面角和壁面的平整度。

3.2.1 挂网

在坡面铺设板厚3mm、规格4cm×8cm钢板网,以1.5m间距梅花形钉入0.8m长丁字钢筋固定钢板网。钢板网与坡面之间垫2cm厚的混凝土保护层垫块。钢板网在每边的搭接长度至少不小于15cm。

3.2.2 喷射混凝土采用潮喷法

潮喷法是一种减少粉尘的技术,其步骤是先向骨料中加入少量水,使其保持潮湿状态,再与水泥混合。这有助于在上料、混合和喷射过程中减少粉尘的产生。然而,主

要的水量仍是在喷头处添加并喷射出来,因此其喷射工艺与干喷工艺非常相似。喷混凝土射混凝土的强度等级为C20。水泥采用P. S. A32. 5水泥,砂采用中砂,粗骨料最大粒径不宜大于10mm. 原材料进场后送试验室复试,并做喷射混凝土的配合比试验。射距宜在0. 8-1. 5m的范围内,从底部逐渐向上部喷射。喷射先送风,后开喷射机;停喷时先停喷射机,后停风。喷混凝土气压应根据喷射距离适当调整。喷射前先调水,当喷嘴喷射雾状水时开始喷射。喷射时控制好水灰比,保持混凝土表面平整、无干斑和滑移流淌现象。对坡面渗漏水比较小的地方,喷射从无水处向有水处进行;对于渗漏水较大的地方,喷射从无水处向有水处进行;对于渗漏水较大的地方,先采取引流措施后再喷混凝土。喷射混凝土完成2h后应进行养护,等混凝土面板达到一定强度后方可进行下一步开挖

4 结语

本文总结了高速公路施工中路基下沉的一些常见问题, 并针对这些问题提出了相适应的解决方案。以期对后续高 速公路工程的建设起到指导意义。

参考文献:

- [1] 林正钦. 韶贛高速公路K2段路面开裂及路基下沉成因机制研究[J]. 西部探矿工程, 2023, 35(08): 12-15.
- [2] 朱旭. 公路大中修工程中路基下沉的处理与预防对策 [J]. 交通世界, 2022 (31): 76-78.
- [3] 刘月强. 公路高填方路基的下沉原因与预防措施研究 [J]. 智能城市, 2021, 7(15): 89-90.
- [4] 李延宁. 公路路基下沉的处理措施[J]. 交通世界, 2021 (21): 127-128.
- [5] 邵统政. 公路大中修工程中路基下沉的处理与预防 [J]. 中阿科技论坛(中英文), 2021 (05): 35-37.
- [6] 崔金福. 公路路基加宽防裂缝及下沉施工技术探究 [J]. 人民交通, 2022 (2): 54-56.
- [7] 王根苗. 浅析公路高填方路基的下沉原因与预防措施 [J]. 名城绘, 2019 (9): 40.

作者简介:

赵新刚(1983.3—),男,汉族,籍贯:陕西礼泉,中 交二公局第四工程有限公司,工程师,本科,专业:交通土 建工程。