# 食品检测中生物检测技术的方法与应用

# 马大勇

克什克腾旗产品质量检验检测所 内蒙古自治区 赤峰 025350

摘要:目前,社会各界对于食品安全问题越来越重视。在现阶段的食品安全检测过程中,可以看到当前食品生产检测环节中引用 了最新的生物技术,并且在实际中取得了良好的成效。本文主要从实际情况出发,探讨食品检测过程中对于生物技术的具体应用, 以便更好满足当前人民生活的需要。

关键词:食品检测;生物技术;有效应用

### 引言:

食品生物检测是食品行业中最关键的问题, 其关系到 的不仅是食品行业的长远发展, 也关系到消费者的利益和 人身安全,由此可见,开展有效的食品安全检测是我国现 代化工作中一项必不可少的内容, 其重要性受到了我国社 会各界的高度重视。但总的来说, 传统的食品检验方式整 体效率低下, 且传统的检验方式已经基本无法满足我国现 代化的食品行业发展需求,工作人员需要积极做好有效的 食品检验,将其应用于食品的安全检测方案中,促进我国 的食品行业的发展,使未来的食品安全得到保障[1]。

#### 一、生物技术概述

生物技术是指借助生物有机体或生物组成部分,对新 型产品、工艺进行开发或是实现特殊目的的技术。在食品 领域中, 生物技术是指应用于食品工业的检测技术。生物 技术不仅能降低检测费用,还能促进检测效率实现大幅度 提高。为有效保障食品安全,并减少食品安全事故,需加 强食品检测。在开展食品检测的实践过程中,仅凭单一的 检测技术难以取得良好的检测效果,对此,相关部门应依 托生物技术, 并参考食品检测涉及的各项标准, 将相关技 术原理融入其中,构建新型的生物检测技术,有效增强食 品检测效果,保障食品安全。在食品检测中,生物检测主 要包括如下内容: ①对食品进行检查, 判断其中是否存在 危害人体健康的微生物;②对食品,特别是瓜果蔬菜进行 检查,判断其中是否存在农药残留;③对食品成分进行检 查,对于加工类食品以及转基因食品所含的营养成分进行 检测, 判断其是否符合相关标准, 并通过严格检验, 准确 判定其是否会损害人体健康。

# 二、食品检测常用的生物技术

#### 1. 基因探针技术

该技术是利用被检测生物内 DNA 分子的变性、复性 及碱基互补配对的精确性,对某一个特异性的 DNA 序列 进行探查。目前该技术分为两类,第 1 类是异性杂交, 第2 类则是同性杂交。虽然在操作上存在着一些不同, 但基本的使用内容都包含探针这个共同点。也就是说,要 使用该技术进行检测, 既需要基因组的 DNA, 也需要具有 特异性的探针。而基因探针技术最广泛应用的地方,就是 针对微生物的检测,它可以发现食物中是否含有大肠杆菌 [2]。这种检测方法操作难度较低、灵敏性高,但设备成 本也高,得出检测结果的速度较慢。

#### 2. PCR 技术

PCR 技术是指在生物体外对既定基因或者 DNA 序列 讲行迅速扩增的技术。该技术以聚合酶链式反应为基础。 该技术最早应用在克隆和转基因检验等领域,呈现出微量 性和准确性优势。随后, 该技术的应用领域日渐拓宽, 特 别是在食品检测领域的应用日益增多。但该技术也存在一 定缺陷,如对存在死亡细菌的食品进行检测时检测结果偏 高,形成假阳性检测误差。对此,相关研究人员要加强对 该技术的深入研究, 在生物监测领域加强对该技术的应用 及改进,降低检测方法的误差。

# 3. 免疫学检测技术

该项技术的应用原理是抗体和抗原的反应,具体涵 盖了免疫沉淀反应、免疫标记技术以及免疫凝集试验。免 疫学检测技术具备了方便、快捷的优势, 并且还具有较强 的特异性和灵敏度,通常情况下,更多被应用于检测食品 中的蛋白质。随着科学技术的不断发展,目前研发人员已 经开发出了一种新型的免疫学检测技术,包含了放射免疫 测定技术和荧光免疫测定技术等。例如常见的 PCR-ELISA 技术,其检测原理是将酶联免疫技术和 PCR 技术相结合, 检测食品中的大肠杆菌。用酶标记特异抗体,并发挥酶的 特异性催化作用,与抗原抗体发生一定的反应,将待检测 物的含量应用底物显色程度体现出来[3]。由于酶本身具 有较强的催化效率,能在原有的基础上进一步放大反应, 确保检测结果的稳定性和准确性。但该项技术目前更多被



应用于鲜活组织监测和基因工程生物体改造中。

#### 4. 生物传感器检测技术

生物传感器检测技术在应用过程中通过应用生物传感 器了解食品的状况,能够将食品的各组分的成分转化为电 信号,帮助工作人员了解食品的特征,能够促进检测工作 的顺利进行,一般情况下来说,生物传感器检测技术会应 用于肉制品的检验中。传统的肉制品检验是主要凭借相关 工作人员的工作经验来进行判断,这种检测方式所展现出 来的主观性较强,如果检测人员在开展工作时缺乏经验或 者缺乏检测责任心,可能导致存在问题的肉制品进入市场, 影响消费者的健康。将生物传感技术应用于肉制品的检测 中,能够有效解决这样的问题,从量化指标的角度对肉制 品的质量进行评估,效果良好。生物传感器检测技术在应 用过程中有较多的不可比拟的优势, 例如这种检测技术具 有极高的灵敏性和选择性, 尤其是具有极高的稳定性低成 本的特点。在进行应用时,可以将其作为微型化的转变, 有助于工作人员携带到现场开展检测工作。生物传感器检 测技术作为一种新型的检测手段,在近年来呈现迅猛的发 展,但目前还并没有在生物检测领域得到普遍的应用。

#### 5. 生物芯片检测技术

随着当前经济全球化,各国经济贸易往来逐渐加强, 在对外进出口食品方面也取得了较大的成效,所以在当前 时代背景下,为了进一步提高进出口食品检测的有效性, 需要提高食品检测的准确性,同时提高检测的质量,以此 为基础构建安全监控体系, 生物芯片检测技术作为高新生 物检测技术在进出口食品安全检测工作上得到了有效的应 用,该技术的主要原理是应用光导原位合成将生物大分子 的顺序进行固化, 然后对需要检测的生物样品进行标记, 借助生物芯片检测技术对靶分子进行杂交,然后借助相关 设备对杂交信号的强度进行快速检测。选择检测仪器时, 电荷偶联摄影相机受到了检测人员的青睐,另外也可以利 用激光共焦距对待检样品进行扫描统计出待检样品中靶分 子的数量。对于食品安全检测状态,采用生物芯片技术, 从目前来看还可以对其进行深入了解[4]。此外,在进出 口食品检测管理工作上,生物芯片检测技术对于快速反应 系统以及预警系统的建立完善有着重要的作用。

# 三、生物技术在食品检测中的应用

### 1. 检测食品中的农药残留

由于在食品生产过程中的操作不当,农药含量超标的 问题时有发生。更为严重的是,居民食用农药残留过多的 食品导致中毒的事件也越来越多,这就需要食品检测部门 对于食品中的农药含量检测提高重视。而效果较为显著的 检测技术就是各种生物技术,比如生物传感器技术、生物 酶技术。它们可以科学、准确、高效地检测出食品中残余 农药的含量,对于食品安全质量的提升大有帮助。

#### 2. 检测食品的品质及成分

对于食品中的成分及品质,通过生物感应器对其进行 检测,是当前最为常见的检测方式。在初期所使用的生物 感应器主要为葡萄糖感应器,以此对于食品的含糖量进行 有效的检测,并且在现实工作中得到了广泛的应用。同时 对食品中含有香气的物质进行检测时,其具体的工作方式 便是将蛋白质及需要进行检测的气体进行融合,使其成为 敏感材料。对于人的身体健康及生活环境而言,转基因食 品会带来一定的负面影响[5]。因此,对转基因食品进行 检测就显得非常重要,当前所采用的主要检测技术,即蛋 白质检测、酶活性检测及油酸检测这三种方式。

#### 3. 检测食品中的有害微生物

采用科学有效的食品检测方式对微生物进行合理检测,使得微生物传播得到良好的控制。食品中的微生物对人体健康带来一系列的危害,并且严重影响食品质量。此项技术在实际应用中具有诸多优势,在对微生物进行检测工作中,生物检测技术取得了良好的成果[6]。目前对卫生食品中微生物进行检测时常见的生物技术内容中,主要有酶联免疫技术,生物传感技术及和酶链式反应技术。

# 结束语:

科学技术的飞速发展使得我国生物技术日渐成熟,生物技术凭借其较高的准确性和灵敏性,在食品检测工作中得到广泛应用,不仅确保了食品质量安全,还降低了人们食用食品的安全隐患。技术人员应全面、充分了解生物技术种类和具体操作方式,不断提升其使用价值,推动食品行业健康发展。

#### 参考文献:

- [1] 林耀文, 佘之蕴, 黄宝莹. 生物技术在食品检测中的应用分析[J]. 现代食品, 2020(22):74-76.
- [2] 黄新泉. 探讨现代生物技术在食品检测领域中的应用[J]. 中国食品,2020(12):154-155.
- [3] 覃世迪. 探讨生物技术在食品检测中的应用 [J]. 中国食品,2020(22):104.
- [4] 张洋. 食品检测中生物技术的应用研究[J]. 食品界, 2020(4):133-134.
- [5] 热沙来提·克依木. 浅析食品检测中生物技术的有效应用[J]. 中国高新区, 2020(19):68-70.
- [6] 黄文强. 现代生物技术在食品工程中的应用[J]. 中国化工贸易,2020,7(26):160.