

苦瓜水提取液对小鼠抗疲劳及耐缺氧作用的研究

莫春梅 朱良胤 罗秋梅 何金城 黄锁义*

(右江民族医学院 广西 百色 533000)

【摘 要】目的:研究苦瓜水提液对小鼠抗疲劳与耐缺氧作用的影响。方法:随机将雄性小鼠分为空白对照组和苦瓜水提取液低、中、高 3 个质量浓度实验组,每组 11 只。4 组分别按 $10 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$ 给予 0, 125 mg/kg,500 mg/kg 芳瓜水提取液。连续灌胃 14 天后,采用小鼠负重游泳力竭实验来评价抗疲劳功能,通过小鼠常压耐缺氧实验来评价其耐缺氧功能,计算肝重系数。结果低中高 $3 \text{ 个质量浓度实验组的负重游泳时间分别为(78.82 ± 39.49), (55.55 ± 12.82), (44.45 ± 21.32)s, 与空白对照组负重游泳时间(110.45 ± 76.54)s 相比明显缩短,中、高 <math>2 \text{ 个质量浓度实验组差异有统计学意义}$ (P < 0.05)。常压耐缺氧时间:低中高 $3 \text{ 个质量浓度实验组的死亡时间分别为(70.27 ± 13.33), (63.91 ± 11.76), (51.09 ± 6.33) min, 与空白对照组死亡时间(84.91 ± 20.40) min 相比有所缩短,低中高 <math>3 \text{ 个质量浓度实验组的组间差异均具有统计学意义}$ (P < 0.05)。肝重系数:低中高 $3 \text{ 个质量浓度实验组的肝重系数分别为(5.10 ± 0.86) × 10 - 2, (4.67 ± 2.8) × 10 - 2, (4.55 ± 0.58) × 10 - 2, 与空白对照组肝比重 (4.59 ± 0.30) × 10 - 2 相比无显著差异,低中高 <math>3 \text{ 个质量浓度实验组小鼠肝重系数差异均无统计学意义}$ (均 P > 0.05)。结论:苦瓜水提取液对于抗疲劳、耐缺氧具有一定的拮抗作用。

【关键词】苦瓜; 抗疲劳; 耐缺氧; 肝重系数; 游泳

Study on Anti-fatigue and Anti-hypoxia Ability of Water Extract of Momordica charantia in Mice

Chunmei Mo Liangyin Zhu Qiumei Luo Jincheng He Suoyi Huang

(Youjiang Medical College for Nationalities, Baise, Guangxi, 533000)

[Abstract] Objective To study the effects of bitter gourd water extract on anti-fatigue and hypoxia tolerance in mice.Methods Male mice were randomly divided into three groups: blank control group and bitter gourd water extract low, medium, and high concentration test groups, each with 11 mice. 4 groups were given 0, 125mg/kg, 250mg/ kg, 500mg/kg bitter gourd water extract at 10 mL · kg⁻¹ · d⁻¹. After 14 days of continuous gastric gavage, the mouse weight-bearing swimming exhaustion test was used to evaluate the anti-fatigue function, the mouse normal pressure hypoxia tolerance test was used to evaluate the hypoxia tolerance function, and the liver weight coefficient was calculated. Results The weight-bearing swimming time of the three experimental groups with low, medium and high concentration were (78.82 ± 39.49) , (55.55 ± 12.82) , (44.45 ± 21.32) s, which was significantly shorter than that of the blank control group (110.45 \pm 76.54) s , The difference between the middle and high mass concentration experimental groups was statistically significant (P < 0.05). Atmospheric hypoxia tolerance time: The death time of the low, medium and high mass concentration experimental groups was (70.27 13.33), (63.91 11.76), (51.09 \pm 6.33)min, which was shorter than that of the blank control group (84.91 ± 20.40)min. The differences among the three mass concentration experimental groups were statistically significant (P < 0.05). Liver weight coefficients: The liver weight coefficients of the low, medium and high mass concentrations experimental groups were $(5.10\pm0.86)\times10^{-2}$, $(4.67\pm2.8)\times10^{-2}$, $(4.55\pm0.58)\times10^{-2}$, no significant difference compared with the liver weight of the blank control group (4.59 ± 0.30) $\times 10^{-2}$ and the differences in liver weight coefficients of mice from the three mass concentrations experimental groups were not statistically significant (all P > 0.05). Conclusion The bitter gourd water extract has a certain antagonistic effect on anti-fatigue and anti-anoxia.

[Key words] Water extracts from Momordica charantia; anti – fatigue; hypoxia tolerance; liver weight coefficient; swimming.

苦瓜(Momordica charantia L.)是葫芦科(Cucurbi taceae),苦瓜属植物,广泛分布在亚洲、非洲、南美等热带和亚热带地区,在我国南方地区广泛种植^[1]。 其味道偏苦,性寒,主要功能为解暑除烦、清热、明目、 解渴等。还可用于缓解中暑、发热烦躁、痢疾、咽喉疼痛及目赤肿痛等病症^[2]。现代研究表明,苦瓜含有多种生物活性的植物成分,如甾类、多糖、蛋白质和多肽、生物碱、三萜类化合物、皂苷、油脂、维生素、

矿物质、黄酮类、奎宁等,发现其具有抗炎、降脂、抗糖尿病、抗氧化性、抗菌、抗病毒、抗肿瘤、免疫调节等药理作用^[3]。李时珍《本草纲目》中记载苦瓜有"解劳乏"的作用。本实验探究苦瓜水提取液对小鼠疲劳、缺氧能力的影响。

1 实验仪器与材料

1.1 动物

SPF 级昆明种雄性小鼠 44 只, 体重 $18 \sim 22 \, \text{ g}$, 由右江民族医学院实验动物中心提供,许可证号为: SCXK 桂 2012-0003。

1.2 仪器

铅条;500mL广口玻璃瓶;手术器械;JA2003 电子分析天平,上海舜宇恒平科学仪器有限公司产品;C21-WK2102 多功能电磁炉,广东美的生活电器制造有限公司产品。

2 实验方法

2.1 药材的鉴定与提取

新鲜苦瓜购于广西百色市右江区东风菜市场,经 右江民族医学院科学实验中心主任黄锁义教授鉴定确 认,苦瓜去籽晒干,粉碎后备用。

按照文献方法制备^[4],将备用苦瓜用 10 倍蒸馏 水浸泡 1h,煮沸 1h,自然冷却至室温后,过滤。然后浓缩至 100%(1mL 含生药 1g),作为原药液,置于冰箱保存备用,实验前再配制成所需浓度使用。

2.2 分组与给药

随机将雄性小鼠平均分为4组(每组11只),对照组和低中高3个质量浓度实验组,3个质量浓度实验组根据体重变化调整灌胃剂量(0.1mL/10g),分别给予125mg/kg、250mg/kg、500mg/kg 苦瓜水提取液,空白对照组按等体积给予0.9%生理盐水。实验动物经适应性喂养1周后测量质量。为保证灌胃剂量的准确与实验严谨性的保证,实验期间每天都测量小鼠质量。所有实验组每24 h 灌胃一次,连续14 d。动物实验过程中均遵守动物实验伦理要求。

2.3 小鼠负重游泳实验

末次灌胃 1h 后,每组小鼠于尾部负重(小鼠体重的 7%)铅皮,放入塑料桶内,每桶 2 只,水深为 25 cm,水温保持(30±2)℃。使小鼠不断游动,从小鼠入水开始计时,至头部沉入水中立刻看秒表,以 6s 后小鼠头部不能浮出水面计时结束,即为小鼠力竭游泳时间。

2.4 常压耐缺氧实验

力竭游泳后正常喂养,于第2天灌胃1h后,将小鼠放入装有30g钠石灰的500 LL广口瓶中(每瓶放一只小鼠),每个广口瓶中用凡士林涂抹瓶口并盖严,立即记录时间,观察并记录小鼠呼吸停止时间,即为小鼠常压耐缺氧时间。

2.5 小鼠称量肝重

解剖小鼠,游离出肝,进行称重,记录每组小鼠 肝重。肝重系数=肝湿重(g)/(体重g)×100%。

2.6 数据处理与统计分析

计量资料用文±s表示,用 SPSS25.0 统计分析软件进行数据录入和整理,用单因素方差分析数据,组间比较用配对 T 检验方法。

3 结果

3.1 苦瓜水提取液对小鼠游泳时间的影响

与对照组比较,低中高3个质量浓度实验组小鼠游泳时间均缩短,其中,低质量浓度组无统计学意义(P>0.05),中质量浓度组(P<0.05)和高质量浓度组(P<0.01)实验组差异有统计学意义。低、中、高3个质量浓度实验组两两比较,低质量浓度组与高质量浓度组差异有统计学意义(P<0.05),其余两组比较差异无统计学意义(P>0.05)。

表 1 苦瓜水提取液对小鼠抗疲劳能力的影响(x±s)

组别	数量 (只)	浓度 (mg/kg)	游泳力竭时间 (s)
空白对照组	11	0	110.45 ± 76.54
低浓度组	11	125	78.82 ± 39.49
中浓度组	11	250	$55.55 \pm 12.82^{\circ}$
高浓度组	11	500	44.45 ± 21.32^{bc}

注:与对照组比较: ${}^{\circ}P < 0.05$, ${}^{b}P < 0.01$;与 低浓度组比较: ${}^{\circ}P < 0.05$, ${}^{d}P < 0.01$;与中浓度组比较: ${}^{\circ}P < 0.05$, ${}^{f}P < 0.01$ 。(如下同)

3.2 苦瓜水提液对小鼠常压耐缺氧实验的影响

与对照组比较,低中高3个质量浓度实验组的死亡时间明显缩短,低质量浓度组(P<0.05)、中质量浓度组(P<0.01)、高质量浓度组(P<0.01)差异有统计学意义。低、中、高3个质量浓度实验组两两比较,低质量浓度组与中质量浓度组差异无统计学意义(P>0.05),低质量浓度组与高质量浓度组、中质量浓度组与高浓度组的组间差异均有统计学意义(P<0.05)。

3.3 苦瓜水提液灌胃小鼠对小鼠肝重系数的影响低中高3个质量浓度实验组的肝重系数分别为

表2苦瓜水提取液对小鼠常压耐缺氧能力的影响(x±s)

组别	数量 (只)	浓度 (mg/kg)	死亡时间 (min)
空白对照组	11	0	84.91 ± 20.40
低浓度组	11	125	$70.27 \pm 13.33a$
中浓度组	11	250	63.91 ± 11.76 b
高浓度组	11	500	51.09 ± 6.332 bce

 $(5.10\pm0.86)\times10^{-2}$, $(4.67\pm2.8)\times10^{-2}$, $(4.55\pm0.58)\times10^{-2}$,与空白对照组肝比重 $(4.59\pm0.30)\times10^{-2}$ 相比无显著差异,低中高 3 个质量浓度实验组小鼠肝重系数差异均无统计学意义(均 P>0.05)。

表 3 苦瓜水提取液对小鼠肝重系数的影响(x±s)

组别	数量 (只)	浓度 (mg/kg)	肝脏系数(%)
空白对照组	11	0	0.0459 ± 0.0030
低浓度组	11	125	0.0510 ± 0.0086
中浓度组	11	250	0.0467 ± 0.0280
高浓度组	11	500	0.0455 ± 0.0058

4 结论与讨论

负重游泳实验和常压缺氧实验可以反映在环境供 氧缺乏和自身耗氧量增加的情况下, 机体抗疲劳及耐 缺氧的能力, 因此常被用于研究药物的抗疲劳和耐缺 氧作用[5-6]。疲劳是指机体于一定条件下,因长时间 过度劳累或紧张地劳动(包括脑力劳动和体力劳动) 到达一定阶段时而引起的工作效率暂时下降的一种生 理和心理现象 [7]。运动性疲劳是由机体一系列生化改 变导致的肌肉收缩力降低而产生的, 是最直接、最客 观的机体运动耐力的降低表现[8]。当机体突然剧烈运 动时,体内需要大量的葡萄快速分解以提供足够的能 量维持机体原有的运动。根据现代药理研究表明,苦 瓜具有明显的降血糖作用[9]。在饮用苦瓜茶的儿童中, 出现罕见低血糖昏迷和惊厥 [10-11]。此实验结果可能与 小鼠服用苦瓜水提取液后因为苦瓜的降糖作用导致小 鼠出现低血糖症状, 使得运动能力下降。在本实验中 出现实验组小鼠死亡时间较对照组短的最大可能是因 为机体供能不足, 无氧氧化时间增加, 且不能及时清 除相应产生的毒害物质, 使得机体酸碱平衡等代谢出 现紊乱。

综上所述,苦瓜水提取液对于抗疲劳、耐缺氧具 有一定的拮抗作用,其机制可能是血糖含量下降,导 致机体供能不足来实现的,其具体作用机制待进一步

研究。

参考文献:

[1] 李洪铭,陈振华,段学民,等.苦瓜的药理作用及其在心血管疾病中的应用[J]. 江西科技师范大学学报,2019(06):71-78

[2] 吕诗文, 叶芳, 吴国辉, 等. 苦瓜抑菌作用的研究进展[]]. 农产品加工, 2020(01):84-86

[3] 周潇恬, 罗非君. 苦瓜的功能成分和生物活性研究进展[]]. 现代食品, 2020(10):66-71

[4] 刘雪婷, 韦秋菊, 周小苏, 等. 搜山虎水提液对小鼠抗疲、耐缺氧作用的实验研究[J]. 右江医学, 2019, 47(10):743-747

[5]KIMKM, YUKW, KANGDH, et al. Anti-stressandanti-fatigue effects of fermented ricebran [J]. Bioscience, Biotechnology, and Biochemist ry, 2011, 65(10):2294-2296

[6] 胡彦武. 东北刺人参茎耐缺氧及抗运动性疲劳 作用研究 []]. 安徽农业科学,2011,39(06):3230+3239

[7] 张雨晨, 肖益, 陈绪清, 等. 菱角壳水提物对小鼠抗疲劳及耐缺氧作用的实验研究[J]. 湖北科技学院学报(医学版),2016,30(02): 93-95

[8] 朱一闻,方树远,徐天姿,等. 黄秋葵多糖抗小鼠运动性疲劳及其作用机制的研究[J]. 浙江中医药大学学报,2013,37(7):902-904

[9] 丁雷,朱怡霏,李梅,等.苦瓜的降糖作用及机制研究进展[J].中国实验方剂学杂志,2021,27(10):204-212

[10] Jaipaul Singh, Emmanuel Cumming, Gunasekar Manoharan, etal. Ernest Adeghate Medicinal Chemistry of the Anti–Diabetic Effects of Momordica Charantia [J]. Active Constituents and Modes of Actions Open Med Chem J, 2011, 5:70–77

[11]Basch E., Gabardi S., Ulbricht C. Bitter melon (Momordica charantia): A review of efficacy and safety[J]. Am. J. Health. Syst.Pharm, 2003, 60:356–359

基金:广西壮族自治区级大学生创新创业训练计划立项基金资助项目(项目编号:202010599040)

作者简介:

第一作者: 莫春梅, 女, 右江民族医学院 2018 级 临本7班学生, 研究方向: 临床医学;

通讯作者:黄锁义,男,二级教授,硕士生导师, 研究方向:天然药物化学、中药化学及中药药理学等。