

金属材料的微生物腐蚀和防护进展

王建斌

辽宁科技大学 辽宁 114051

摘 要:在人们的日常生活中,金属材料的使用随处可见,小到居民的用行,大到社会各行各业的生产发展,都离不开对金属材料的使用。可以说金属材料是人类社会发展过程中必不可缺的材料之一,金属材料的使用也大大提高了人类社会的发展速度。然而,由于金属材料本身的特殊性,在使用过程中非常容易遭受腐蚀,其遇到腐蚀问题受多方面因素的影响。其中最常见的腐蚀问题就是微生物腐蚀。金属材料遭受腐蚀会很大程度降低其自身性能,金属材料的使用期限也会因此而大大缩短。只有通过采取有效措施合理解决金属材料的腐蚀问题,确保金属材料的使用性能及使用期限,才能够真正推动金属材料的防护进展。

关键词: 金属材料; 微生物腐蚀; 防护措施

引言

人类社会对于金属材料的使用无疑是加快了社会的 发展脚步,但是根据真实调查研究表明,在社会生产发 展过程中,由于微生物腐蚀造成的金属材料的浪费,其 损耗金额非常之大。由此可以看出,金属材料的微生物 腐蚀问题必须及时采取有效措施进行解决,否则将会严 重影响社会经济发展的脚步。进行金属材料微生物腐蚀 的防护势在必行,只有从根源上解决金属材料的微生物 腐蚀问题,才能够真正推动人类社会的发展脚步。

一、金属材料的结构特点

金属材料在人们日常生活中使用广泛,可以分为金属和合金,其本身具有导电性、导热性、硬度大、强度大、密度高、熔点高、有良好的金属光泽等属于物理性质的特点;另外,金属材料还具有化学性质活泼,大多数的金属材料可以与氧气、酸溶液、盐溶液进行化学反应的化学性质的特点,这是金属材料本身存在的特质。由于这些特质,金属材料在使用过程中具有良好的耐冲击性以及较高的强韧性,其本身特殊的内在结构决定了它具有同等热膨胀特性。但也是由于金属材料的化学特质,非常容易与氧气、酸溶液、盐溶液等进行反应,从而导致金属材料遭受腐蚀,特别是微生物腐蚀问题。任何事物都具有两面性,金属材料的使用给人们生活带来便利的同时,也带来了环境污染资源浪费等问题。进行金属材料微生物腐蚀的防护刻不容缓。

二、金属材料的腐蚀机理

可以说大多数情况下,金属材料的腐蚀都是从最外 层开始的。因为金属材料容易受周围介质的化学及电化 学作用而被破坏,这种现象可以称作氧化还原反应。氧 气是人类在地球上居住必不可少的,看不见摸不着却哪里都有。因此如果金属材料在没有防护壳的情况下,时时都在与氧气产生反应,还并不包括其他反应因素的加入。金属材料氧化还原反应产生的过程,就是金属材料遭受腐蚀的过程。如何根据金属材料的腐蚀机理,采取有效措施进行腐蚀问题的解决,加强金属材料在使用过程中的防护,是相关工作人员需要认真考虑的问题。

三、生物膜生成及其对微生物腐蚀的影响

(一)生物膜的成长过程

许多微生物都是附着在别的生物上生存,且由于其自身特性容易遭受其他事物的入侵,微生物为了确保自身安全,就会形成自我保护的反馈机制,在面对其他事物入侵,例如缓蚀剂、杀菌剂等,自我保护的反馈机制就会收到讯息,从而产生大量粘液来抵御外来事物的入侵。微生物自我保护反馈机制产生的御体就可以称之为生物膜。生物膜的成分是比较复杂的,由细菌、EPS、腐蚀产物、悬浮颗粒等成分组成。并且生物膜具有不断繁衍生长的特点,微生物附着在金属材料的表面,受外界因素的刺激,必然会形成生物膜来保护其自生可以更好生存,如此一来就会加速金属材料表层的腐蚀速度,不利于金属材料的防护。

(二)生物膜的特性

生物膜的形成,改变了金属表面原有的静电状态和湿润性质,微生物可以通过形成的生物膜,加速对金属钢碳腐蚀速率的影响。可以说,生物膜的形成是微生物腐蚀金属材料表面至关重要的一个层面,其产生的特性可以帮助微生物更好的进行腐蚀。其一,生物膜是可以不断繁殖生长的,它会生长到一定程度就会成熟,成熟

的生物膜不仅可以帮助微生物大范围扩散腐蚀性粒子, 还可以隔绝微生物产生的新陈代谢扩散到膜外, 外界因 素无法从根源上刺激微生物, 内界腐蚀性粒子聚集的越 来越多,通过生物膜形成的微型腐蚀环境,就会加速金 属表层的腐蚀速度;其二,生物膜的形成有利于形成浓 差电池,金属材料是极容易与氧气产生氧化还原反应的, 当微生物附着在金属表面,特别是好氧微生物经过一段 时间就会形成生物膜,好氧微生物就会更加聚集在一起, 而耗氧量多的一方则为阳极, 耗氧量少的一方则为阴极, 因此就会形成浓差电池,就会加速腐蚀性腐蚀性粒子的 扩散; 其三, 生物膜的形成会加速改变金属表面无机钝 化层的结构, 促进防护性膜层的移除。微生物生物膜中 的EPS会与金属表面的金属离子产生作用从而改变金属 氧化层的稳定性,由此会导致金属表层会受到大面积的 细菌污染, 金属表层的无机钝化结构遭受破坏, 那么金 属材料就更加容易遭受微生物的腐蚀; 其四, 生物膜的 形成会影响金属材料表面的氧化还原状态,微生物生物 膜的形成,会使金属表面的氧浓度降为0,而这一因素正 好有益于附着在金属材料表层的厌氧微生物进行繁殖生 长,而在其生物膜内又形成了特殊的腐蚀环境,从而加 快了金属表面的腐蚀速度。

(三)腐蚀过程中生物膜的双重角色

任何事物都具有两面性,有好的一方面就一定有坏的一方面,微生物形成的生物膜也是如此。尽管它拥有很多特性,也不全是加快微生物的腐蚀速度,一些生物膜的形成也可以抑制微生物的腐蚀速度。微生物作为可以改变金属界面的电化学性质之一,可以说是一种非常神奇的存在,一方面生物膜的形成会加速菌群的生成从而导致腐蚀速度的加快,另一方面,也可能因为生物膜的形成影响金属的钝化行为,从而抑制微生物对金属材料表面的腐蚀速度。如何进行金属材料的有效防护,需要相关工作人员就微生物层面进行全面的探究,从而提出可以解决金属材料微生物腐蚀的办法。

四、微生物腐蚀作用机理

(一)好氧菌腐蚀机理的产酸腐蚀

金属材料的腐蚀分为很多种,其中最常见波及范围 最广的就是微生物腐蚀。上面说到金属材料的腐蚀机理, 其现象可以称为氧化还原反应,金属材料在没有防护壳 的情况下,其氧化还原反应会更加严重。相同条件下, 金属材料的表面非常容易甚至可以说不可避免的会附着 一些人类无法用肉眼观察到的微生物,这些微生物可能 还不属于同一类型,它们附着在金属材料的表面生存, 由于其自生的新陈代谢,微生物会产生一些酸性代谢物,而由于金属材料本身的化学特质,容易与酸溶液或者酸性物质进行反应,那么双重条件因素的影响下,金属材料的腐蚀问题会更加严重。举个例子,微生物中的醋酸梭菌在新陈代谢的过程中会产生醋酸,其酸性程度更高,大量的醋酸梭菌聚集附着在金属材料的表面,会加速金属材料的腐蚀速度,不利于金属材料的长期使用。

(二)好氧菌腐蚀机理的氧浓差电池

好氧菌腐蚀金属材料离不开两种因素,一是微生物, 二是金属材料的自身特性。两者不但可以相互影响,甚 至在相互反应相互作用的过程中,在金属材料的表面产 生氧浓差电池。氧浓差电池顾名思义,其含氧量一定差 别很大,含氧量较低的一方称为阳极,含氧量较高的一 方称为阴极。微生物特别是好氧菌附着在金属材料的表 面,非常容易消耗周围氧气进行反应,耗氧量较大就形 成了阳极,而金属材料微生物附着较少的地方其耗氧量 也相对较低,则可以称为阴极,从而形成氧浓差电池。 金属材料表面与微生物反应的过程中,倘若阳极过强也 就是微生物的耗氧量过大,那么阴极反应的机理就会加 速氧气向金属材料的表面进行扩散,导致金属材料与氧 气产生氧化还原反应的表面面积更多,从而导致金属材 料表面遭受微生物腐蚀的速度更快范围更广。这就是金 属材料好氧菌腐蚀带来的影响。

(三) 厌氧菌腐蚀机理的阴极去极化

阴极去极化一早是作为一种理论被提出来,相关专家认为氢化酶可以使金属材料的表面产生的氢使SO4还原为H2S,从而在腐蚀过程中达到阴极去极化的作用,加速金属材料的腐蚀。然而之后的研究证明这个理论存在一定的问题,因为金属材料腐蚀的过程具有不可逆性,金属材料的腐蚀过程是由速率步骤控制的,氢化酶的使用产生的效果并没有很明显,而磷化物,硫化物等作用机制可以较好的产生阴极去极化。硫化物和磷化物大多产自于厌氧微生物,因此厌氧菌腐蚀机理的阴极去极化也需要重点关注。

(四) 厌氧菌腐蚀机理硫化物诱导阳极溶解

厌氧微生物有许多,硫酸盐还原菌就是其中之一。 当大量的硫酸盐还原菌附着在金属材料的表面时,由于 新陈代谢它们会产生许多的硫化物,根据金属材料的自 身特性,其非常容易与酸性物质进行反应,酸度越高其 反应程度就更加强烈。硫酸盐还原菌产生的硫化物会形 成恶劣的金属腐蚀环境,造成金属碳钢阳极的溶解速度 加快,金属材料的腐蚀性敏感性程度增加,就加速了金

属材料表面的腐蚀情况。硫化物是金属材料遭受腐蚀的 主要因素之一,如何改变金属材料微生物腐蚀问题的现 状,需要相关工作人员认真思虑,并且采取有效措施进 行解决。

五、金属材料微生物腐蚀的防护措施

从了解金属材料自身的物理特性和化学特性,以及 对微生物形成的生物膜的特性和对微生物进行分类探究 来看,如何进行金属材料的微生物腐蚀防护,可以采取 三种措施,一,物理方法;二,化学方法;三,防护性 涂层,这三种方法是基于金属材料本身具有的特性以及 不同类型的微生物在金属表层会产生怎样的反应所提出 来的。只有针对事物的特征采取有效的解决措施,才能 真正做到药到病除。金属材料得到有效防护,才可以真 正推动金属材料防护工程的进步。

(一) 金属材料防腐的物理办法

根据金属材料硬度大、强度大、密度高的物理特性, 其本身其实不容易受到其他事物的影响,但是金属材料 容易产生氧化还原反应遭受腐蚀。因此,在选择用什么 材料进行金属制品的制作就需要工作人员进行认真的思 考了。为了保证金属制品的使用期限以及防腐蚀程度, 相关工作人员选择材料时,可以选择在铸造过程中经过 酒精清洗处理的铸铁,通过酒精清洗这一步骤的铸铁拥 有很强的抗腐蚀能力,相关工作人员也可以选择高钼不 锈钢其抗腐蚀能力也非常强。从选择什么样的材料制作 金属制品的源头,来提高金属材料表层的防腐蚀性能力, 另外相关工作人员需要定时进行金属制品的检查与养护 并且做好记录,从各个方面严抓金属材料的防护,提高 金属材料的使用期限,将生产成本用到更加需要的地方, 才能够真正推动社会生产的发展。

(二)金属材料防腐的化学方法

除了使用经过酒精清洗的铸铁外,从本身提高金属 材料表层的防腐能力。根据金属材料容易与氧气、酸性 物质等产生化学反应,相关工作人员一定要重视金属材 料的日常防护,比如,为了能够更好防护金属材料不受 腐蚀,相关工作人员需要对金属材料进行定期的微生物 抑制剂的喷洒,工作人员可以就金属材料是否受到腐蚀 的实际情况进行杀菌剂或者抑菌剂的选择。顾名思义, 杀菌剂和抑菌剂都是为了可以杀死或者是抑制活动在金 属材料表面的微生物所用的化学用剂。另外,相关工作人员进行金属材料的目常维护时,可以采用阴极保护法,使得金属材料的表面生成碱性环境,从而从一定程度上抑制附着在金属材料表面的微生物进行腐蚀。这是根据金属材料的化学特性,从而采取化学方法进行微生物的防腐,从而更好的进行金属材料微生物腐蚀的防护。

(三) 防护性有机涂层

金属材料使用广泛,小到家居用品大到公共基础设施,进行有效的金属材料微生物腐蚀的防护,需要考虑到方方面面,不但要从物理方面化学方面,相关工作人员还需要考虑金属材料是什么用途。比如,地下电缆的填埋、海洋建筑材料、工地建筑物等,受复杂环境的影响,金属材料防腐能力的不确定性因素就会随之增多。因此,金属材料进行有机涂层的涂抹是非常必要的。有机涂层不但可以提高金属材料表面的光滑程度,让微生物不易于附着,还可以保护生态环境,符合生态文明发展的理念。有机涂层保护金属材料的同时,会随着时间的推移慢慢降解,可以从一定程度上缓解环境压力。因此,相关工作人员进行有机涂层的选择是一定要慎之又慎,防止在使用过程中出现空洞,从而导致金属材料遭受微生物腐蚀的状况,提高金属材料的防腐能力。

六、结束语

金属材料用途广泛,在未来人类发展的很长一段时间里,都离不开对金属材料的使用。然而金属材料容易受到附着于表面的微生物的腐蚀,从而大大降低了金属材料的使用寿命和使用效率,这不仅是对金属资源的浪费,更是会加重地球环境压力的现状。为了提高金属材料的使用寿命,完善金属材料微生物腐蚀的防护,采取有效措施提高金属材料的防腐能力,是相关工作人员需要认真思考的问题。问题只有得到妥善解决,金属材料才能够更好的为人类所使用。

参考文献:

- [1] 王宏业, 赵平. 金属材料的微生物腐蚀机理及防护 [J]. 辽宁化工, 2021, 50(7):5.
- [2] 王玉辰[1]. 浅谈金属材料的微生物腐蚀的有效防护[J]. 科学技术创新, 2018(31):2.
- [3] 许萍, 任恒阳, 汪长征,等. 金属表面混合微生物腐蚀及分析方法研究进展[J]. 表面技术, 2019.