

基于 BIM 技术对疏散平台参数测量的研究与分析

朱建华1邓迪禹2

1 朱建华 杭州市地铁集团有限责任公司 浙江 杭州 310000; 2 邓迪禹 中铁建电气化局集团南方工程有限公司 湖北 武汉 430074

【摘要】地铁线路节点要求轨通后一周电通,而疏散平台钢梁生产周期为2~3周,钢梁订货的相关参数需要依据轨道铺通后测量而定,采用此种方式无法满足施工节点要求。故研究采用 BIM 技术,根据盾构贯通测量成果、轨道平面布置及轨道调线调坡图建立三维盾构及轨道模型,通过模型在钢梁安装位置计算钢梁角度与长度,指导施工前期订货,保证按时完成施工节点。

【关键词】疏散平台; 钢梁; BIM

Abstract:Metro Lines require power on one week after rail connection, while the production cycle of steel beam of evacuation platform is 2~3 weeks. The parameters of steel beam ordering are determined by measurement after rail connection, this method can not meet the requirements of construction node. Therefore, BIM technology is adopted in the study, and threedimensional shield model and track model are established according to the results of shield cross-section survey, track plan layout and track alignment map, the angle and length of the steel beam are calculated by the model at the installation position of the steel beam to guide the pre-construction order and ensure the completion of the construction node on time.

Key words: Evacuation Platform; steel beam; BIM

1研究目的

国内地铁线路建设中,都存在轨通较晚的区间,如 杭州地铁杭富线美院象山至音乐学院站区段、杭州地铁 8号线过江大盾构区段、杭州地铁6号线星民路至奥体 中心站区段等。这些区段轨通后1~2周就要求电通热滑, 如按传统轨通后测量疏散平台钢梁及面板尺寸再订货, 则无法满足施工节点要求。因此在杭州地铁6号线星民 路至奥体中心站区间采用 BIM 技术进行建模分析,用现 场实测数据与建模数据进行分析比对,判定采用 BIM 技 术对指导疏散平台提前订货的可行性。

充分运用 BIM 应用软件的三维设计优势,并结合可 视化编程工具对软件二次开发,针对隧道平台提前精确 下料的应用点需求定向编写程序,弥补该三维设计软件 与隧道平台专业不对口的劣势。实现高效快速的三维参 数化建模设计与隧道平台钢梁下料等参数获取。

应用过程伴随着坐标参数的输入应用与几何模型与 数据参数的生成,此时三维应用软件是所有应用信息的 资源库,但所包含的信息因无法分类导出而得不到充分 利用,根据需求,将信息分为几何信息、数据信息和两 个大类,借助可视化程序整理各类信息并导出,做好信 息储存,为信息传递奠定基础。

2 研究筹划

2.1 杭州地铁 6 号线星奥区间左线情况简介

杭州地铁 6 号线星民路至奥体中心站区间起点里程 为 YDK21+675.912,终点里程为 YDK22+885.820,区间 含 7.961m 的短链,整个星奥区间左线全长 1201.947m, 共计 999 环。建模阶段时星奥区间左线已铺轨 300 环, 约 360 米。

2.2 建模主要步骤

本次 BIM 建模主要分为两大步。第一步,在星奥区 间左线已铺轨 300 环段进行建模,该区段包含直线及曲 线部分,通过建模计算与现场实测对比,分析数据偏差, 完善建模数据。第二部分,结合第一部分建模完善情况 对星奥区间左线全线进行 BIM 建模计算,统计疏散平台 订货数据。

2.3 建模详细筹划

为了更好的完成基于 BIM 技术对疏散平台参数测量 的研究与分析,成立专业的 BIM 建模小组,制定了 BIM 建模的工作计划。主要采用 Revit2018、Dynamo 等软件 对盾构、轨道进行建模,在模型中计算出钢梁角度与长 度,然后分析算量、导出表格指导订货。

_	
-	- 1
70	
~~	-

			1	
序号	标题	工作内容	备注	所用软件及实现方法
1	单体 建模	根据盾构施工图完 成単环盾构建模, 根据钢轨剖面图完 成钢软建模,根据 厂家钢梁生产图完 成单套钢梁建建模, 根据厂家面板生产。 图完成面板建模。	取得单环盾 构施工图、 钢轨剖面图、 厂家钢梁生 产图、厂家 面板生产图	Revit2018,根据生产施工图 建立钢梁族模型,隧道盾构 轮廓族,平台轮廓族,钢轨 轮廓族。
2	盾构 建模	根据具体区段(星 奥区间)结构断面 调线测量成果表找 出每环盾构的中心 坐标,根据每环盾 构中心坐标完成该 区段盾构建模。	取得该区段 结构断面调 线测量成果 表(获取盾 构中心点坐 标)	Revit2018+Dynamo,利用坐标 生成隧道中心线,载入隧道 盾构轮廓族进行参数化建立 隧道盾构模型。
3	轨道 建模	根据轨道线路中心 平面布置图和调坡 调线图得到轨道线 路中心的三维坐 标,根据该坐标完 成整个区段(星奥 区间)轨道建模。	取得该区段 轨道线路中 心平面布置 图和调坡调 线图	Revit2018+Dynamo,利用坐标 生成轨道中心线,载人轨道 轮廓族进行参数化建立轨道 模型。
4	平建及型善	根据完成的轨道模型找出轨面中心往上900mm的点,并 水平延伸至盾构片 与和00水子。 与和10次点的切线角度,得和10次距 度,得到10次距距。 方和10次距。 高和10次距。 高和10分子。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切线角。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的切齿。 一次的动齿。 一次的切齿。 一次的动齿。 一次 一次的动齿。 一次 一次的动齿。 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次		Revit2018+Dynamo,利用参数 化将模型中轨道中心线以上 850mm 的线投影到侧面,对 应平台钢梁位置。
5	统计 与梳 理	根据已完成的整个 区段的模型,完成 平台钢梁、面板型 号以及数量的统 计,辅助现场施工 材料预定。		Revit2018+Dynamo+excel, Dynamo 批量导出模型中所需 钢梁里程坐标点及钢梁尺寸 与角度参数。

疏散平台设置于星奥区间的强电侧, 疏散平台 面板高度为轨面中心往上 900mm 处, 直线段限界为 1700mm, 曲线段根据限界加宽图进行适当的加宽。

图1限界加宽示意图

3 软件确定

3.1 软件的要求

3.1.1 三维模型在搭建完成后应携带几何、数据、 空间等信息,保证信息输入与输出完整性。

3.1.2 为使平台构件模型准确定位,应保证标高、 坐标系统等定位信息的准确性。

3.1.3 软件应具备较强的数据信息处理能力及信息

积累与输出的功能,以保证随着项目的推进,不断完善构件族库。提高类似项目对构件的复用率。

3.2 软件确定

BIM 是一个概念化的技术统称,并非单指一个软件, 也不是某个软件就能解决问题的,在 BIM 应用的一系列 软件中每个参数化应用软件有不同的侧重功能。结合众 多 BIM 软件,根据本工程应用点的实际情况与需实现的 目的,选择以下最合适的应用软件。

Autodesk 系列软件在我国使用率较高,工程人员必备的 CAD 就是旗下软件。本次应用中我们就选用旗下 另一个 BIM 软件 Revit, Revit 的特点是界面友好,操作 简单,专业针对性强,不同专业的内置模板充分考虑了 用户需求。Revit 主要针对房屋的建筑与结构和机电管 线专业,对于曲线、曲面等异形构件体模型搭建存在缺 陷,建模效率极低,但可借助其软件本身的 API 接口对 其进行二次开发,或者借助可视化编程插件 Dynamo 即 可弥补 Revit 的异形空间建模缺陷,并可利用其列表的 灵活编辑对数据进行批量化输入处理、分析、应用与输 出。此外 Revit 还可通过与 CAD 及 Civil3D 相互配合, 弥补隧道领域的专业缺陷。

3.3 Dynamo 功能介绍

Dynamo 是 Revit 软件的内置插件,可通过 Dynamo 的可视化编程驱动 Revit 软件的模型与数据处理。可通 过 python 设计脚本与节点程序实现,Dynamo 参数平台 的节点是特点格式的简单语言,可根据需要直接选择应 用,但具有局限性,节点库中没有的功能则需要 python 设计脚本与节点程序编辑来实现,这就是 Dynamo 的灵 活度与功能更加强大,但操作门槛较高,需操作人员具 有较强的语言程序编写能力。

3.4 Dynamo 与 Revit 交互

3.4.1 创建项目文件, Revit 创建项目文件, 通过 Dynamo 驱动参数直接在 Revit 平台创建模型。

3.4.2 操作,通过节点将 Revit 族构件的参数提取 到 Dynamo 平台,对其进行分析操作,再将参数返还至 Revit 平台,对模型几何尺寸与信息进行改变。

3.4.3 提取数据,直接将 Revit 模型及其信息提取到 Dynamo 平台,再根据需求将所需信息输出。

3.5 数据处理

参数化批量处理是 Dynamo 的核心优势,通过 List 节点组或根据特定功能需要编写脚本语言、Python Script 节点直接输入编辑程序来得以实现。数据以列表的形式 储存,节点包括数据的生成,数据的提取,逻辑判定, 分类整理及编辑,为了数据输出更便捷储存,列表的数 据通过转置、排序、分组归类结合列表嵌套等多种编辑 方式,完成数据的整合。

3.6 坐标信息载入应用

将盾构中心坐标表与轨面中心坐标表中路线点坐标数据,应用图示 Dynamo模块将坐标点数据输入到 Dynamo平台中,再由 Dynamo程序直接拾取点坐标生成 三维模型线,交互到 Revit 平台中,为后续应用其路线 建立模型打下基础。

4 盾构建模

4.1 坐标数据分析

从第三方测量机构得到盾构断面测量成果数据,立即对数据进行分析处理,首先对设计中心坐标和实测中 心坐标进行比对,二者差距基本控制在 20mm 以内,基 本无偏移,证明数据的可靠性较强。

底部测点高程 H 和顶部测点高程 HO 二者的中间为 盾构中心的高程坐标,且 HO−H ≈ 5.5m,证实该高程 计算得到的盾构中心坐标高程数据可靠。

表 2 盾构断面测量成果数据分析表

单位:	i位:杭州市勘测设计研究院												
	检测断面里程	设计结构中心坐标		实测结构中心坐标		<u>ч</u> ь , , , , , , , , , , , , , , , , , , ,	H(底部测点高程)			HO(顶部测点高程)			
环号		x (m)	y (m)	x (m)	y (m)	中心调 差(m) i	设计值(m)	实测值(m)	误差(m)	设计值 (m)	实测值(m)	误差(m)	HO-H(m)
1	21676.855	76710.091	85748.246	76710.103	85748.238	0.015	-9.333	-9.343	-0.01	-3.833	-3.83	0.003	5.513
5	21681.681	76712.661	85752.33	76712.677	85752.319	0.02	-9.343	-9.344	-0.001	-3.843	-3.812	0.031	5.532
12	21690.081	76717.13	85759.443	76717.148	85759.432	0.022	-9.375	-9.393	-0.018	-3.875	-3.883	-0.008	5.51
15	21693.693	76719.047	85762.504	76719.062	85762.494	0.018	-9.396	-9.424	-0.029	-3.896	-3.919	-0.024	5.505
20	21699.7	76722.229	85767.6	76722.232	85767.598	0.004	-9.44	-9.478	-0.038	-3.94	-3.986	-0.046	5.492
25	21705.708	76725.396	85772.704	76725.396	85772.704	0	-9.497	-9.549	-0.052	-3.997	-4.054	-0.057	5.495
30	21711.727	76728.551	85777.829	76728.545	85777.833	0.007	-9.565	-9.607	-0.042	-4.065	-4.105	-0.04	5.502
35	21717.736	76731.679	85782.96	76731.676	85782.962	0.003	-9.646	-9.68	-0.034	-4.146	-4.183	-0.037	5.497

4.2 盾构建模误差分析

进行盾构建模时计划采用实测的盾构中心坐标进行 建模,减少后期误差。但分析发现,实测坐标间隔5环 测量一次,故认为5环测量一次间隔太大,加大建模后 期计算误差,故采用每一环实测数据更真实可靠。但经 过交涉得知,第三方测量都是间隔5环测量一次,无每 环的测量数值。故对5环进行建模的可行性进行研究, 通过模拟发现,采用间隔5环数据建模最中间的位置误 差不大于20mm,且可根据盾构弯曲的曲率对该部分盾 构进行修正,消除这部分的误差。

4.3 盾构建模软件分析

图 3 盾构中心线建模图

隧道盾构模型总体呈线形分布,利用 Revit 建立参

数化盾构轮廓族,再由 Dynamo 程序模块,沿着线路三 维模型线辅助快速搭建准确的隧道盾构模型。完成对隧 道盾构可视化模型的快速搭建。

图 4 盾构软件建模示意图

5轨道建模

5.1 轨面中心三维坐标获取

轨道建模是依据轨道线路平面布置图得到线路中心 的平面坐标,根据调坡调线图得到线路中心的高程,由 此得到轨面中心的三维坐标,根据三维坐标进行轨道建 模。

盾构区间起点里程加 0.6m,得到第一环盾构中心 里程,然后每环里程加 1.2m,得到整个区间每环盾构中 心里程。根据轨道平面布置图和我方计算轨面中心平面 坐标的计算软件,计算出每环盾构中心对应轨面中心平 面坐标。再根据调坡调线图,计算出每个坐标高程,得

到每环盾构中心对应的轨面中心的三维坐标,以此为依据,进行轨道建模。

轨道建模时,还要考虑到超高因素,圆曲段轨面超 高保持一致,直缓点到缓圆点的超高成线性增加。

	表 3 新奥左线轨道坐标数据										
环数	里程	x	у	轨面标高 z	限界加宽量	轨面超高	备注				
1	FZDK21+676.512	76709.907	85747.956	-8.637782268	18.15669197		直				
2	FZDK21+677.715	76710.548	85748.974	-8.640105312	19.80854862		直				
3	FZDK21+678.918	76711.189	85749.992	-8.642428356	21.46040526		直				
4	FZDK21+680.121	76711.831	85751.009	-8.644751399	23.11226191	0.606577778	缓曲				
5	FZDK21+681.324	76712.472	85752.027	-8.647074443	24.76411856	1.462044444	缓曲				
6	FZDK21+682.527	76713.114	85753.045	-8.649397487	26.41597521	2.317511111	缓曲				
7	FZDK21+683.730	76713.755	85754.063	-8.651720531	28.06783185	3.172977778	缓曲				
8	FZDK21+684.933	76714.396	85755.081	-8.654043574	29.7196885	4.028444444	缓曲				
9	FZDK21+686.136	76715.037	85756.099	-8.656366618	31.37154515	4.883911111	缓曲				
10	FZDK21+687.339	76715.678	85757.117	-8.658689662	33.02340179	5.739377778	缓曲				
11	FZDK21+688.542	76716.318	85758.135	-8.661012706	34.67525844	6.594844444	缓曲				

5.2 轨道建模软件分析

在转弯处轨道存在超高的情况,利用 Dynamo 轨面 模块对输入的数据进行分析,同时 Revit 建立参数化轨 道轮廓族,再由 Dynamo 的左钢轨与右钢轨程序模块, 沿着生成的线路三维模型线辅助快速搭建准确的轨道模 型,将超高参数反映到左右钢轨模型中。完成对轨道可 视化模型的快速搭建。

图 5 根据轨面中心坐标信息生成轨面中心线

图 6 根据轨面中心线和轨道截面轮廓(考虑实际超高值)分别生 成左右钢轨模型

图 7 轨道模型图

6 钢梁建模及数提取

6.1 钢梁计算原则

轨道建模时,已经统计出每环盾构中心对应的轨面 中心坐标,平台安装位置与该坐标相对应。因此我方将 该坐标垂直向上上升 850mm,水平投影至强电侧的隧道 壁上,读取投影在隧道壁上的坐标值,计算出该点与轨 面中心的水平距离即限界。再计算出平台底板安装后与 水平面的夹角,即平台钢梁的角度。通过该点所在的位 置(直线、缓曲、圆曲)的限界加宽值计算出该点的钢 梁长度和面板宽度。

图 8 钢梁单体模型

6.2 钢梁软件优化

为了在 Revit2018 模型软件更直观的得到每环盾构 钢梁安装的技术参数,在模型关联了多重数据。比如在 模型中选中某一块钢梁,他的参数表中体现钢梁的里程、 角度、限界、长度等数据,方便对局部数据进行处理。

6.3 数据提取

平台悬臂钢梁属性信息大部分为可变参数,借助 Select Model Element 节点对各平台悬臂钢梁实例——选 择并提取数据,参数名称及数据的提取借助 Parameter. Parameter By Name 节点输入参数名称实现,每个平台 悬臂钢梁族构件的所有属性的名称以字符串格式组成列 表,一次提取所有的参数信息。数据信息在 BIM 三维模 型建立过程中形成,借助 Dynamo 程序直接输出每个平 台悬臂钢梁的长度及角度等信息。

将 Revit 平台数据提取至 Dynamo 的节点及程序,

数据导出以Revit 平台的相对坐标为参考,保证数据的 原始性,保持毫米及单位不做修改,将X、Y、Z坐标 的列表数据转置更适合于表格数据储存,在每一个平台 悬臂钢梁坐标前添加索引区分实例,索引的添加程序因 随模型线数量而变化,借助List.Count节点提取X、Y、 Z坐标的列表项数,再借助 code block 脚本形成与项数 相关的数组。最后同样借助 Data.Export Excel 节点导出 数据。实现列表提取、导出等主要功能,对数据列表进 行格式编辑,直接输出每个平台悬臂钢梁的X、Y、Z 坐标数据。

表	4	星奥区间左线软件导出悬臂梁参数明细表
~		工人口日本或你们的自己自家乡众的清晰

环数	里程	投影点坐标 x	投影点坐标 y	投影点坐标 z	悬臂梁角度	悬臂梁限界值	加宽量 A	悬臂梁长度(限界 值 -1700- 加宽量)	轨道超高 h
1	21676.512	76711.29628	85745.78008	-7.601647179	66.82690215	2514	18.15669	795.843308	0
2	21677.715	76712.31288	85746.42331	-7.601647179	66.66333219	2511	19.80855	791.1914514	0
3	21678.918	76713.32992	85747.06584	-7.601647179	66.57032428	2510	21.46041	788.5395947	0
4	21680.121	76714.34735	85747.70769	-7.601647179	66.54411102	2510	23.11226	786.8877381	0.606578
5	21681.324	76715.3647	85748.34956	-7.603970223	66.52494023	2509	24.76412	784.2358814	1.462044
6	21682.527	76716.38249	85748.99055	-7.606293267	66.55834532	2509	26.41598	782.5840248	2.317511
7	21683.73	76717.40079	85749.63059	-7.60861631	66.63716066	2511	28.06783	782.9321681	3.172978
8	21684.933	76718.41963	85750.26963	-7.610939354	66.75418794	2513	29.71969	783.2803115	4.028444
9	21686.136	76719.43898	85750.9077	-7.613262398	66.90221796	2516	31.37155	784.6284549	4.883911
10	21687.339	76720.45878	85751.5449	-7.615585442	67.07404842	2520	33.0234	786.9765982	5.739378
11	21688.542	76721.47897	85752.18132	-7.617908485	67.26249766	2525	34.67526	790.3247416	6.594844

6.4 数据对比

根据导出的数据与现场实测值进行比对,钢梁角度 误差基本在1°以内,可以通过1个垫片对钢梁进行调 平,数据可用。限界误差控制在30mm以下,且均比实 测值小,疏散平台钢梁本身就是50mm一个型号,采用 此数据不会侵限且数据可靠,也符合厂家生产要求。故 采用 BIM 技术建模指导疏散平台钢梁订货真实可靠。

表 5										
环数	里程	悬臂梁 模型角 度	现场实 测角度	角度 值差	模型计 算 A3 限 界	现场实 测 A3 限界	限界 值差	备注		
740	22565.53	67.40	66.95	0.45	2402	2429	-27	圆曲		
741	22566.73	67.40	66.95	0.45	2401	2429	-28	圆曲		
742	22567.94	67.40	66.75	0.65	2401	2430	-29	圆曲		
743	22569.14	67.40	66.75	0.65	2402	2430	-28	圆曲		
744	22570.34	67.39	66.9	0.49	2404	2437	-33	圆曲		
745	22571.54	67.38	66.9	0.48	2406	2437	-31	缓曲		
746	22572.75	67.37	66.6	0.77	2409	2445	-36	缓曲		
747	22573.95	67.35	66.6	0.75	2414	2445	-31	缓曲		
748	22575.15	67.32	66.7	0.62	2418	2452	-34	缓曲		
749	22576.36	67.29	66.7	0.59	2422	2452	-30	缓曲		
750	22577.56	67.26	66.65	0.61	2425	2456	-31	缓曲		
751	22578.76	67.23	66.65	0.58	2427	2456	-29	缓曲		
752	22579.97	67.20	66.6	0.60	2427	2457	-30	缓曲		
753	22581.17	67.18	66.6	0.58	2427	2457	-30	缓曲		
754	22582.37	67.16	66.6	0.56	2427	2461	-34	缓曲		
755	22583.57	67.15	66.6	0.55	2428	2461	-33	缓曲		

7 总结

基于 BIM 技术对疏散平台参数测量,重点在于提 取精准的轨道中心参数和盾构中心参数,基于这 2 种参 数进行三维建模,建模时注意盾构和轨道在曲线段根据 曲率进行修正,减少计算、测量、建模带来的误差,使 建模提取的数据更真实更可靠。模型建立完成,建立精 准的计算方法,计算出钢梁的角度与参数。

通过本次建模,高效的完成 BIM 技术对疏散平台 订货的指导,解决轨道未通平台参数不能确定的难题, 保证施工节点。可以以此作为推广,将此模型关联成软件,将盾构中心坐标和轨道中心输入软件,直接生产整 体模型和导出数据表格,快速有效地完成订货任务。

图 10 BIM 建模整体效果图 同时也希望在疏散平台建模的基础上,可将其他需

要根据轨道定位的专业也逐一添加至模型内部,如接触 网锚栓定位等,旨在提高站后系统专业的整体施工效率, 也可为后续线路的施工组织提供帮助。

【参考文献】

[1] 柳龙. 基于 BIM 技术的桥梁快速建模方法研究 [D]. 河北: 石

家庄铁道大学,2018.

- [2] 程霄, 王辉. Dynamo 可视化编程在预制装配式构件中的应用 [J]. 四川建筑, 2018, 38(02): 25-27+29.
- [3] 徐博. 基于 BIM 技术的铁路工程正向设计方法研究 [J/OL]. 铁道标准设计,2018(04)[2019-04-03].
- [4] 徐小奇, 黄晓明. 基于 Civil3D 的 BIM 路线全自动识别与生成技术 [J]. 山西建筑, 2019,45(05):257-258.