全排列的和的均值问题

尤佩泉

浙江省宁波华茂国际学校 浙江 宁波 315192

摘 要:本文研究了 2017 年 4 月 7 日举行的欧几里得数学竞赛第 9 题,将全排列的和的均值问题从有限个自然数推广到任意 n 个数,其中数字不仅限于自然数,还可以是普通的数列,例如等差数列,且结论的形式更加简洁。 关键词:欧几里得数学竞赛;全排列的和;均值

The Average Value of a Sum over all Permutations

You Peiquan

(Ningbo Huamao International School, Ningbo 315192, China)

Abstract: We study the 9th question of the Euclid Contest in April 7, 2017 of University of Waterloo. We can extend the method of determining the average value of a sum over all permutations from certain numbers to n numbers. Meanwhile, the numbers are not only natural numbers, but also can be a common series, such as an arithmetic sequence. The form of the average value is concise. **Keywords**: Euclid Contest; Sum over all Permutations; The Average Value

1. The 9th question of the Euclid Contest in April 7, 2017 of

University of Waterloo

Apermutation of a list of numbers is an ordered arrangement of the numbers in that list. For example, 3, 2, 4, 1, 6, 5 is a permutation of 1, 2, 3, 4, 5, 6. We can write this permutation as a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , where $a_1 = 3$, $a_2 = 2$, $a_3 = 4$, a_4 = 1, $a_5 = 6$, and $a_6 = 5$.

(a) Determine the average value of $|a_1 - a_2| + |a_3 - a_4|$ over over all permutations a_1 , a_2 , a_3 , a_4 of 1, 2, 3, 4.

(b) Determine the average value of a₁ - a₂ + a₃ - a₄ + a₅ - a₆ + a₇ over all permutations a₁, a₂, a₃, a₄, a₅, a₆, a₇ of 1, 2, 3, 4, 5, 6, 7.

(c) Determine the average value of $|a_1 - a_2| + |a_3 - a_4| + \dots + |a_{197} - a_{198}| + |a_{199} - a_{200}|$ over all permutations $a_1, a_2, a_3, \dots, a_{199}, a_{200}$ of 1, 2, 3, 4, \dots , 199, 200.

Sulotion. (a) 10/3; (b) 4; (c) 6700.

2. Theorem

Theorem 1 The average value of $a_1 - a_2 + a_3 - a_4 + \cdots + (-1)^{n+1}a_n$ over all permutations a_1, a_2, \cdots, a_n of 1, 2, \cdots, n is $\frac{n+1}{2}$ when n is even and 0 when n is odd.

Proof:

There aren! permutations of 1, 2, ..., n. We determine the average value of $a_1 - a_2 + a_3 - a_4 + \cdots + (-1)^{n+1}a_n$ over all of these permutations by determining the sum of all n! values of this

To determine the sum of alln! values, we write them in a ma-

trix as follow.

expression and dividing by n!.

$\left(a_{1}\right)$	- <i>a</i> ₂	a_3	$-a_{4}$	•••	$(-1)^{n+1}a_n$
a_1	- a ₃ - a ₃	a_2	- <i>a</i> ₄		$(-1)^{n+1}a_n$
a_1	- a ₃	a_4	- <i>a</i> ₂		$(-1)^{n+1}a_n$
a_n	- <i>a</i> _{<i>n</i>-1}	a_{n-2}	- <i>a</i> _{<i>n</i>-3}		$(-1)^{n+1}a_1$

We determine the sum of the values of the first column and call this totals, then the sum of the second column will be -s, and so on. The sum of the values of the last column is $(-1)^{n+1}s$. Obviously, the average value of the sum of all n! permutations is $\frac{s}{n!}$ when n is even and 0 when n is odd. So we need to determine the value of s.

There are $(n-1)! a_1$ in the first column, $(n-1)! a_2$ in the first column, and so on. Thus,

$$s = (a_1 + a_2 + \dots + a_n) \cdot (n-1)! = (1+2+\dots+n)$$
$$(n-1)! = \frac{n(n+1)}{2} \cdot (n-1)! = \frac{(n+1)!}{2}$$

Therefore, the average value of the expression is $\frac{n+1}{2}$ when n

is even and $\boldsymbol{0}$ when n is odd.

Theorem 2 The average value of $|a_1 - a_2| + |a_3 - a_4| + \cdots$ + $|a_{n-1} - a_n|$ over all permutations a_1, a_2, \cdots, a_n of 1, 2,

新时代教育·教海拾贝 01 2020 163

...,
$$n ext{ is } \frac{n(n+1)}{6}$$
. (n is even).

Proof:

There aren! permutations of 1, 2, \cdots , *n*. According to the proof of Theorem 1, we can get a matrix with n! rows and $\frac{n}{2}$ columns. We determine the sum of the values of the first column and call this total s, then the sun of other columns will also be s.

There are (n-2)! permutations with $a_1 = i$, $a_2 = j$. Since |i-j| = |j-i|, then there are 2 [(n-2)!] permutations with $|a_1 - a_2| = |i-j|$ that come from a_1 and a_2 equalling i and j in some order. Therefore, we may assume that i > j and note that s equals 2 [(n-2)!] times the sum s_1 of i-j over all possible pairs i > j. Thus, the average value of the sum of all n! permutations is

Thus, the average value of the sum of all n! permutations is $\frac{\frac{n}{2} \cdot s}{\frac{n!}{n!}}$ mine the value of s₁.

$$\frac{\frac{n}{2} \cdot s}{n!} = \frac{\frac{n}{2} \cdot 2 \cdot (n-2)! \cdot s_1}{n!} = \frac{s_1}{n-1}.$$
 So we need to determine

n!

$$s_{1} = (a_{2} - a_{1}) + (a_{3} - a_{1}) + \dots + (a_{n} - a_{1}) + (a_{3} - a_{2}) + (a_{4} - a_{2}) + \dots + (a_{n} - a_{2}) + \dots + (a_{n} - a_{n-1})$$

$$= (2 - 1) + (3 - 1) + \dots + (n - 1) + (3 - 2) + (4 - 2) + \dots + (n - 2) + \dots + [n - (n - 1)]$$

$$= 1 \cdot (n - 1) + 2 \cdot (n - 2) + \dots + (n - 1) \cdot 1$$

$$= [n - (n - 1)](n - 1) + [n - (n - 2)](n - 2) + \dots + (n - 1) \cdot 1$$

$$= n[(n - 1) + (n - 2) + \dots + 1] - [(^{n} - 1)2 + (^{n} - 2)2 + \dots + 1^{2}]$$

$$= n \cdot \frac{(n - 1)n}{2} - \frac{(n - 1)n(2n - 1)}{6}$$

Therefore, the average value of the expression is

$$\frac{s_1}{n-1} = \frac{1}{n-1} \cdot \frac{n(n-1)(n+1)}{6} = \frac{n(n+1)}{6}$$

3. Conclusion

Conclusion 1 The average value of $a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1}a_n$ over all permutations a_1 , a_2 , \dots , a_n of the first n of the sequence $\{b_n\}$ is $\frac{T_n}{n}$ when n is even and 0 when n is odd. T_n is the sum of the first n terms of $\{b_n\}$.

Conclusion 2 The average value of $|a_1 - a_2| + |a_3 - a_4| + \dots + |a_{n-1} - a_n|$ over all permutations a_1, a_2, \dots, a_n of the first n of the arithmetic sequence $\{b_n\}$ is $\frac{n(n+1)}{6} \cdot d$. d is the common difference of $\{b_n\}$.