接触引起的奇怪腐蚀化合物: 博物馆展品上玻璃引起的金属腐蚀综述
摘要
有钠和/或钾、氢氧化物和碳酸盐(吸收二氧化碳)离子。这些电解质在与金属接触时会引起腐蚀。令人惊讶的是,
这一现象只有在过去二十年中,斯图加特的研究才得以实现。同时,在一些遗产收藏中检测到大约350个受影响的
对象。由于特殊的电解质,通常会形成不寻常的腐蚀产物。通过现代X射线粉末衍射数据评估,可以确定其中三种
未知的结构和公式。一个例子是在玻璃罐的白钨盖上检测到的碱性碳酸钾铅,KOH·2PbCO3。已知结构的钠类似物
在空心玻璃球中被发现,空心玻璃球内有熔化的铅。铜镍钴酸盐Na2[Cu(CO3)2]·3H2O是铜合金与苏打溶液接触
后的腐蚀产物(此处:玻璃降解)。暴露于醋酸排放物(例如木材)中,它会转化为迄今尚未确定结构的醋酸铜碳酸
钠。无处不在的污染物甲醛在玻璃降解提供的碱性介质中直接与甲酸盐反应。因此,在与玻璃接触的铜合金上,甲
酸盐很常见:50%的情况下为Na4Cu4O(HCOO)8(OH)2
·4H2O,33%的情况下是Cu2(HCOO)(OH-xCux)6
(HCOO)8(OH)18·6H2O。还有许多其他腐蚀产物,例如,含有锌和羧酸盐,有待进一步表征。预防性养护需要
通过干储存(不低于35%rH)来减缓腐蚀。需要通过仔细选择用于储存、展示和保护的材料来避免污染物。
关键词
全文:
PDF参考
1. Eggert, G. Corroding Glass, Corroding Metals: Survey
of Joint Metal/Glass Corrosion Products on Historic Objects.
Corros. Eng. Sci. Technol. 2010, 45, 414–419. [CrossRef]
2. Eggert, G.; Fischer, A. Gefährliche Nachbarschaft:
Durch Glas induzierte Metallkorrosion an MuseumsExponaten—Das GIMMEProjekt. Restauro 2012, 118, 38–43.
3. Fischer, A. Glasinduzierte Metallkorrosion an
Museums-Exponaten. Ph.D. Thesis, Staatliche Akademie der
Bildenden Künste, Stuttgart, Germany, 19 December 2016.
[CrossRef]
4. Veiga, A.; Teixeira, D.; Candeias, A.; Mirão, J.;
Rodrigues, P.; Teixeira, J. On the chemical signature and
origin of dicoppertrihydroxyformate Cu2 (OH)3HCOO) formed
on copper miniatures of 17th and 18th centuries. Microsc.
Microanal. 2016, 22, 1007–1017.[CrossRef] [PubMed]
5. Holzleitner, M.; Hietz, M.; Lenhart, E.; Anghelone,
M.; Krist, G. Glass-Induced Metal Corrosion: Study and
Conservation of an Enamelled Altarpiece (1954–1956) of
the Collection of the University of Applied Arts Vienna. In
Proceedings of the Metals 2019— Interim Meeting of the
ICOM-CC Metals Working Group, Neuchâtel, Switzerland,
2–6 September 2019; Available online: https://icom-ccpublications-online.org (accessed on 30 July 2022).
6. Marchetti, A.; Beltran, V.; Nuyts, G.; Borondics, F.; De
Meyer, S.; Van Bos, M.; Jaroszewicz, J.; Otten, E.; Debulpaep,
M.; De Wael, K. Novel optical photothermal infrared (O-PTIR)
spectroscopy for the noninvasive characterization of heritage
glass-metal objects. Sci. Adv. 2022, 8, eabl6769. [CrossRef]
7. Saliba, N.A.; Yang, H.; Finlayson-Pitts, B.J. Reaction
of gaseous nitric oxide with nitric acid on silica surfaces in the
presence of water at room temperature. J. Phys. Chem. A 2001,
105, 10339–10346. [CrossRef]
8. Schmutzler, B.; Eggert, G.; Kuhn-Wawrzinek, C.F.
Copper(II) hydroxide on artefacts: Corrosion, conservation,
colourants. Stud. Conserv. 2017, 62, 61–67. [CrossRef]
9. Hatchfield, P. Pollutants in the Museum Environment,
1st ed.; Archetype: London, UK, 2002.
10. Gibson, L.T.; Watt, C.M. Acetic and formic acids
emitted from wood samples and their effect on selected
materials in museum environments. Corros. Sci. 2010, 52,
172–178. [CrossRef]
11. Thickett, D.; Ling, D. Investigation of Weeping Glass
Deterioration Under Controlled Relative Humidity Conditions.
Stud. Conserv. 2022, 67, 366–372. [CrossRef]
12. Salthammer, T. Data on formaldehyde sources,
formaldehyde concentrations and air exchange rates in
European housings. Data Brief 2019, 22, 400–435. [CrossRef]
13. Verhaar, G. Glass Sickness: Detection and Prevention.
Ph.D. Thesis, University of Amsterdam, Amsterdam, The
Netherlands, 18 October 2018. Available online: https://pure.
uva.nl/ws/files/29086476/Thesis_complete_.pdf (accessed on
30 July 2022).
14. Eggert, G. Abschlussbericht zum DBU-Projekt AZ
33255/01. Korrosion von National Wertvollen Kulturgütern
aus Glas und Metall Durch Anthropogene Carbonyl-Schadgase
im Innenraum: Modellhafte Schadensdiagnose und Maßnahmen
zur Prävention; Staatliche Akademie der Bildenden Künste:
Stuttgart, Germany, 2019. [CrossRef]
15. Eggert, G.; Bette, S.; Dinnebier, R.E. Curious
compounds— Investigating the Variety and Structure of
Calcium Acetate Efflorescence on Calcareous Objects by
XRPD. In Proceedings of the ICOM-CC 19th Triennial
Conference, Beijing, China, 17–21 May 2021; Available
online: https://icom-cc-publications-online.org (accessed on
30 July 2022).
16. Fischer, A.; Eggert, G.; Dinnebier, R.; Runˇcevski,
T. When glass and metal corrode together, V: Sodium copper
formate. Stud. Conserv. 2018, 63, 342–355. [CrossRef]
17. Dinnebier, R.E.; Fischer, A.; Eggert, G.; Runˇcevski,
T.; Wahlberg, N. X-ray Powder Diffraction in Conservation
Science: Towards Routine Crystal Structure Determination of
Corrosion Products on Heritage Art Objects. J. Vis. Exp. 2016,
112, e54109. [CrossRef] [PubMed]
18. Fischer, A.; Eggert, G.; Kirchner, D.; Euler, H.;
Barbier, B. When Glass and Metal Corrode Together. IV,
Sodium Lead Carbonate Hydroxide. In Proceedings of the
Metal 2013—Interim Meeting of the ICOM-CC Metal Working
Group, Edinburgh, UK, 16–20 September 2013; Available
online: https://icom-cc-publications-online.org (accessed on
30 July 2022).
19. Bette, S.; Eggert, G.; Fischer, A.; Dinnebier, R.E.
Glass-induced Lead Corrosion of Heritage Objects: Structural
Characterization of K(OH)·2PbCO3. Inorg. Chem. 2017, 56,
5762–5770. [CrossRef] [PubMed]
20. Fischer, A.; Eggert, G.; Stelzner, J. When Glass and
Metal Corrode Together, VI: Chalconatronite. Stud. Conserv.
2020, 65, 152–159.[CrossRef]
21. Fischer, A.; Eggert, G.; Stelzner, J.; Bette, S.;
Dinnebier, R.E. When Glass and Metal Corrode Together,
VII: Zinc Formates and Further Unknown Zinc Compounds.
In Proceedings of the Metals 2019— Interim Meeting of the
ICOM-CC Metals Working Group, Neuchâtel, Switzerland,
2–6 September 2019; Available online: https://icom-cc-
publications-online.org (accessed on 30 July 2022).
22. Bette, S.; Fischer, A.; Stelzner, J.; Eggert, G.;
Dinnebier, R.E. Brass and Glass: Crystal Structure Solution
and Phase Characterisation of the Corrosion Product Zn4Cu3
(Zn1-xCux)6 (HCOO)8 (OH)18·6(H2O). Eur. J. Inorg. Chem.
2019, 2019, 920–927. [CrossRef]
23. Kutzke, H.; Heym, S.; Sch ö n e m a n n , A .
Natriumbleihydroxidcarbonat, NaPb2 (OH)(CO3) 2, als
Weißpigment auf einem Eisengitter in der Pfarrkirche
St. Martin, Oberwesel (Rheinland). In Archäometrie und
Denkmalpflege 2009; Metalla Sonderheft 2; Deutsches
Bergbau-Museum: Bochum, Germany, 2009; pp. 252–253.
24. Auerbach, F.; Pick, H. Umsetzungen schwerlöslicher
Bleisalze. Z. Elektrochem. 1913, 19, 827–830.
25. Frade, J.C.; Oliveira, M.J. Uncovering the Decoration
Techniques of a Southeast Asian Lacquered Buddha Sculpture.
e-Conserv. J. 2014, 2, 79–93. [CrossRef]
26. Ibáñez-Insa, J.; Elvira, J.J.; Llovet, X.; Pérez-Cano,
J.; Oriols, N.; Busquets-Masó, M.; Hernández, S. Abellaite,
NaPb2(CO3)2 (OH), a new supergene mineral from the Eureka
mine, Lleida province, Catalonia, Spain. Eur. J. Mineral. 2017,
29, 915–922. [CrossRef]
27. Barger, S.; White, W.B. The Daguerreotype: 19th
Century Technology and Modern Science; Johns Hopkins
Press: London, UK, 2000; p. 167.
28. Sengupta, A.K.; Nandi, A.K. Complex Carbonates
of Copper (II). J. Inorg. Nucl. Chem. 1974, 36, 2479–2484.
[CrossRef]
29. Eggert, G.; Fischer, A.; Dinnebier, R.E. One Heritage
Corrosion Product Less: Basic Sodium Copper Carbonate.
Herit. Sci. 2016, 4, 27. [CrossRef]
30. Thickett, D.; Odlyha, M. Note on the Identification of
an Unusual Pale Blue Corrosion Product from Egyptian Copper
Alloy Artifacts. Stud. Conserv. 2000, 45, 63–67. [CrossRef]
31. Paterakis, A.B. The Formation of Acetate Corrosion
on Bronze Antiquities: Characterisation and Conservation.
Ph.D. Thesis, University College of London, London, UK, 1
June 2011. Available online: https://discovery.ucl.ac.uk/id/
eprint/1318069(accessed on 30 July 2022).
32. Eggert, G.; Fischer, A. The formation of formates: A
review of metal formates on heritage objects. Herit. Sci. 2021, 9,
26. [CrossRef]
33. Trentelman, K.; Stodulski, L.; Scott, D.; Back, M.;
Stock, S.; Strahan, D.; Drews, A.R.; O’Neill, A.; Weber,
W.H.; Chen, A.E.; et al. The Characterization of a New Pale
Blue Corrosion Product Found on Copper Alloy Artifacts. Stud.
Conserv. 2002, 47, 217–227. [CrossRef]
34. Dinnebier, R.E.; Runˇcevski, T.; Fischer, A.; Eggert,
G. Solid-state Structure of a Degradation Product Frequently
Observed on Historic Metal Objects. Inorg. Chem. 2015, 54,
2638–2642. [CrossRef] [PubMed]
35. Eggert, G.; Wollman, A.; Schwahn, B.; HustedtMartens, E.; Barbier, B.; Euler, H. When glass and metal
corrode together. In Proceedings of the ICOM Committee
for Conservation 15th Triennial Meeting, New Delhi, India,
22–26 September 2008; Available online: https://icom-ccpublications-online.org (accessed on 30 July 2022).
36. Eggert, G.; Bührer, A.; Barbier, B.; Euler, H.
When Glass and metal corrode together, II: A Black Forest
Schäppel and Further Occurences of Socoformacite. In Glass
and Ceramics Conservation 2010; Roemich, H., Ed.; Corning
Museum of Glass: Corning, NY, USA, 2010; pp. 174–180.
37. Eggert, G.; Haseloff, S.; Euler, H.; Barbier, B. When
Glass and Metal Corrode Together, III: The Formation of
Dicopper TrihydroxyFormate. In Proceedings of the ICOMCC 16th Ttriennial Conference, Lisbon, Portugal, 19–23
September 2011; Critério-Produção Grafica: Lisbon,
Portugal„ 2011; pp. 1–9. Available online: https://icom-ccpublications-online.org (accessed on 30 July 2022).
38. Euler, H.; Barbier, B.; Kirfel, A.; Haseloff, S.; Eggert,
G. Crystal Structure of Trihydroxydicopper Formate, Cu2 (OH)3
(HCOO). Z. Krist. New Cryst. Struct. 2009, 224, 609–610.
[CrossRef]
39. Keller, I.; Fischer, A. How Rare Is It? A Survey in the
Swiss National Museum. In Glass Deterioration Colloquium—
Extended Abstracts; Staatliche Akademie der Bildenden
Künste: Stuttgart, Germany, 2015; pp. 41–44.
40. Schorpp, A.; Braun, M.; Fischer, A.; Eggert, G. In
Search of Frequency: Glass-induced Metal Corrosion in the
Deutsches BergbauMuseum Bochum. METALLA 2019, 25,
33–41. Available online: https://metalla.org/index.php/
METALLA/article/view/9269/8810 (accessed on 30 July 2022).
[CrossRef]
41. Eggert, G. Saturated salt solutions in showcases:
Humidity control and pollutant absorption. Herit. Sci. 2022,
10, 54. [CrossRef]
Refbacks
- 当前没有refback。