首页出版说明中文期刊中文图书环宇英文官网付款页面

接触引起的奇怪腐蚀化合物: 博物馆展品上玻璃引起的金属腐蚀综述

格哈 德·
德国斯图加特国家艺术与设计学院保护科学研究所

摘要


许多文物是由玻璃与金属接触而成的。通过与吸收的水进行离子交换,在玻璃表面形成碱性水膜。它们含
有钠和/或钾、氢氧化物和碳酸盐(吸收二氧化碳)离子。这些电解质在与金属接触时会引起腐蚀。令人惊讶的是,
这一现象只有在过去二十年中,斯图加特的研究才得以实现。同时,在一些遗产收藏中检测到大约350个受影响的
对象。由于特殊的电解质,通常会形成不寻常的腐蚀产物。通过现代X射线粉末衍射数据评估,可以确定其中三种
未知的结构和公式。一个例子是在玻璃罐的白钨盖上检测到的碱性碳酸钾铅,KOH·2PbCO3。已知结构的钠类似物
在空心玻璃球中被发现,空心玻璃球内有熔化的铅。铜镍钴酸盐Na2[Cu(CO3)2]·3H2O是铜合金与苏打溶液接触
后的腐蚀产物(此处:玻璃降解)。暴露于醋酸排放物(例如木材)中,它会转化为迄今尚未确定结构的醋酸铜碳酸
钠。无处不在的污染物甲醛在玻璃降解提供的碱性介质中直接与甲酸盐反应。因此,在与玻璃接触的铜合金上,甲
酸盐很常见:50%的情况下为Na4Cu4O(HCOO)8(OH)2
·4H2O,33%的情况下是Cu2(HCOO)(OH-xCux)6
(HCOO)8(OH)18·6H2O。还有许多其他腐蚀产物,例如,含有锌和羧酸盐,有待进一步表征。预防性养护需要
通过干储存(不低于35%rH)来减缓腐蚀。需要通过仔细选择用于储存、展示和保护的材料来避免污染物。

关键词


碳酸铜;甲酸铜;玻璃引起的金属腐蚀;GIMME公司;遗产对象;碳酸铅;甲酸锌

全文:

PDF


参考


1. Eggert, G. Corroding Glass, Corroding Metals: Survey

of Joint Metal/Glass Corrosion Products on Historic Objects.

Corros. Eng. Sci. Technol. 2010, 45, 414–419. [CrossRef]

2. Eggert, G.; Fischer, A. Gefährliche Nachbarschaft:

Durch Glas induzierte Metallkorrosion an MuseumsExponaten—Das GIMMEProjekt. Restauro 2012, 118, 38–43.

3. Fischer, A. Glasinduzierte Metallkorrosion an

Museums-Exponaten. Ph.D. Thesis, Staatliche Akademie der

Bildenden Künste, Stuttgart, Germany, 19 December 2016.

[CrossRef]

4. Veiga, A.; Teixeira, D.; Candeias, A.; Mirão, J.;

Rodrigues, P.; Teixeira, J. On the chemical signature and

origin of dicoppertrihydroxyformate Cu2 (OH)3HCOO) formed

on copper miniatures of 17th and 18th centuries. Microsc.

Microanal. 2016, 22, 1007–1017.[CrossRef] [PubMed]

5. Holzleitner, M.; Hietz, M.; Lenhart, E.; Anghelone,

M.; Krist, G. Glass-Induced Metal Corrosion: Study and

Conservation of an Enamelled Altarpiece (1954–1956) of

the Collection of the University of Applied Arts Vienna. In

Proceedings of the Metals 2019— Interim Meeting of the

ICOM-CC Metals Working Group, Neuchâtel, Switzerland,

2–6 September 2019; Available online: https://icom-ccpublications-online.org (accessed on 30 July 2022).

6. Marchetti, A.; Beltran, V.; Nuyts, G.; Borondics, F.; De

Meyer, S.; Van Bos, M.; Jaroszewicz, J.; Otten, E.; Debulpaep,

M.; De Wael, K. Novel optical photothermal infrared (O-PTIR)

spectroscopy for the noninvasive characterization of heritage

glass-metal objects. Sci. Adv. 2022, 8, eabl6769. [CrossRef]

7. Saliba, N.A.; Yang, H.; Finlayson-Pitts, B.J. Reaction

of gaseous nitric oxide with nitric acid on silica surfaces in the

presence of water at room temperature. J. Phys. Chem. A 2001,

105, 10339–10346. [CrossRef]

8. Schmutzler, B.; Eggert, G.; Kuhn-Wawrzinek, C.F.

Copper(II) hydroxide on artefacts: Corrosion, conservation,

colourants. Stud. Conserv. 2017, 62, 61–67. [CrossRef]

9. Hatchfield, P. Pollutants in the Museum Environment,

1st ed.; Archetype: London, UK, 2002.

10. Gibson, L.T.; Watt, C.M. Acetic and formic acids

emitted from wood samples and their effect on selected

materials in museum environments. Corros. Sci. 2010, 52,

172–178. [CrossRef]

11. Thickett, D.; Ling, D. Investigation of Weeping Glass

Deterioration Under Controlled Relative Humidity Conditions.

Stud. Conserv. 2022, 67, 366–372. [CrossRef]

12. Salthammer, T. Data on formaldehyde sources,

formaldehyde concentrations and air exchange rates in

European housings. Data Brief 2019, 22, 400–435. [CrossRef]

13. Verhaar, G. Glass Sickness: Detection and Prevention.

Ph.D. Thesis, University of Amsterdam, Amsterdam, The

Netherlands, 18 October 2018. Available online: https://pure.

uva.nl/ws/files/29086476/Thesis_complete_.pdf (accessed on

30 July 2022).

14. Eggert, G. Abschlussbericht zum DBU-Projekt AZ

33255/01. Korrosion von National Wertvollen Kulturgütern

aus Glas und Metall Durch Anthropogene Carbonyl-Schadgase

im Innenraum: Modellhafte Schadensdiagnose und Maßnahmen

zur Prävention; Staatliche Akademie der Bildenden Künste:

Stuttgart, Germany, 2019. [CrossRef]

15. Eggert, G.; Bette, S.; Dinnebier, R.E. Curious

compounds— Investigating the Variety and Structure of

Calcium Acetate Efflorescence on Calcareous Objects by

XRPD. In Proceedings of the ICOM-CC 19th Triennial

Conference, Beijing, China, 17–21 May 2021; Available

online: https://icom-cc-publications-online.org (accessed on

30 July 2022).

16. Fischer, A.; Eggert, G.; Dinnebier, R.; Runˇcevski,

T. When glass and metal corrode together, V: Sodium copper

formate. Stud. Conserv. 2018, 63, 342–355. [CrossRef]

17. Dinnebier, R.E.; Fischer, A.; Eggert, G.; Runˇcevski,

T.; Wahlberg, N. X-ray Powder Diffraction in Conservation

Science: Towards Routine Crystal Structure Determination of

Corrosion Products on Heritage Art Objects. J. Vis. Exp. 2016,

112, e54109. [CrossRef] [PubMed]

18. Fischer, A.; Eggert, G.; Kirchner, D.; Euler, H.;

Barbier, B. When Glass and Metal Corrode Together. IV,

Sodium Lead Carbonate Hydroxide. In Proceedings of the

Metal 2013—Interim Meeting of the ICOM-CC Metal Working

Group, Edinburgh, UK, 16–20 September 2013; Available

online: https://icom-cc-publications-online.org (accessed on

30 July 2022).

19. Bette, S.; Eggert, G.; Fischer, A.; Dinnebier, R.E.

Glass-induced Lead Corrosion of Heritage Objects: Structural

Characterization of K(OH)·2PbCO3. Inorg. Chem. 2017, 56,

5762–5770. [CrossRef] [PubMed]

20. Fischer, A.; Eggert, G.; Stelzner, J. When Glass and

Metal Corrode Together, VI: Chalconatronite. Stud. Conserv.

2020, 65, 152–159.[CrossRef]

21. Fischer, A.; Eggert, G.; Stelzner, J.; Bette, S.;

Dinnebier, R.E. When Glass and Metal Corrode Together,

VII: Zinc Formates and Further Unknown Zinc Compounds.

In Proceedings of the Metals 2019— Interim Meeting of the

ICOM-CC Metals Working Group, Neuchâtel, Switzerland,

2–6 September 2019; Available online: https://icom-cc-

publications-online.org (accessed on 30 July 2022).

22. Bette, S.; Fischer, A.; Stelzner, J.; Eggert, G.;

Dinnebier, R.E. Brass and Glass: Crystal Structure Solution

and Phase Characterisation of the Corrosion Product Zn4Cu3

(Zn1-xCux)6 (HCOO)8 (OH)18·6(H2O). Eur. J. Inorg. Chem.

2019, 2019, 920–927. [CrossRef]

23. Kutzke, H.; Heym, S.; Sch ö n e m a n n , A .

Natriumbleihydroxidcarbonat, NaPb2 (OH)(CO3) 2, als

Weißpigment auf einem Eisengitter in der Pfarrkirche

St. Martin, Oberwesel (Rheinland). In Archäometrie und

Denkmalpflege 2009; Metalla Sonderheft 2; Deutsches

Bergbau-Museum: Bochum, Germany, 2009; pp. 252–253.

24. Auerbach, F.; Pick, H. Umsetzungen schwerlöslicher

Bleisalze. Z. Elektrochem. 1913, 19, 827–830.

25. Frade, J.C.; Oliveira, M.J. Uncovering the Decoration

Techniques of a Southeast Asian Lacquered Buddha Sculpture.

e-Conserv. J. 2014, 2, 79–93. [CrossRef]

26. Ibáñez-Insa, J.; Elvira, J.J.; Llovet, X.; Pérez-Cano,

J.; Oriols, N.; Busquets-Masó, M.; Hernández, S. Abellaite,

NaPb2(CO3)2 (OH), a new supergene mineral from the Eureka

mine, Lleida province, Catalonia, Spain. Eur. J. Mineral. 2017,

29, 915–922. [CrossRef]

27. Barger, S.; White, W.B. The Daguerreotype: 19th

Century Technology and Modern Science; Johns Hopkins

Press: London, UK, 2000; p. 167.

28. Sengupta, A.K.; Nandi, A.K. Complex Carbonates

of Copper (II). J. Inorg. Nucl. Chem. 1974, 36, 2479–2484.

[CrossRef]

29. Eggert, G.; Fischer, A.; Dinnebier, R.E. One Heritage

Corrosion Product Less: Basic Sodium Copper Carbonate.

Herit. Sci. 2016, 4, 27. [CrossRef]

30. Thickett, D.; Odlyha, M. Note on the Identification of

an Unusual Pale Blue Corrosion Product from Egyptian Copper

Alloy Artifacts. Stud. Conserv. 2000, 45, 63–67. [CrossRef]

31. Paterakis, A.B. The Formation of Acetate Corrosion

on Bronze Antiquities: Characterisation and Conservation.

Ph.D. Thesis, University College of London, London, UK, 1

June 2011. Available online: https://discovery.ucl.ac.uk/id/

eprint/1318069(accessed on 30 July 2022).

32. Eggert, G.; Fischer, A. The formation of formates: A

review of metal formates on heritage objects. Herit. Sci. 2021, 9,

26. [CrossRef]

33. Trentelman, K.; Stodulski, L.; Scott, D.; Back, M.;

Stock, S.; Strahan, D.; Drews, A.R.; O’Neill, A.; Weber,

W.H.; Chen, A.E.; et al. The Characterization of a New Pale

Blue Corrosion Product Found on Copper Alloy Artifacts. Stud.

Conserv. 2002, 47, 217–227. [CrossRef]

34. Dinnebier, R.E.; Runˇcevski, T.; Fischer, A.; Eggert,

G. Solid-state Structure of a Degradation Product Frequently

Observed on Historic Metal Objects. Inorg. Chem. 2015, 54,

2638–2642. [CrossRef] [PubMed]

35. Eggert, G.; Wollman, A.; Schwahn, B.; HustedtMartens, E.; Barbier, B.; Euler, H. When glass and metal

corrode together. In Proceedings of the ICOM Committee

for Conservation 15th Triennial Meeting, New Delhi, India,

22–26 September 2008; Available online: https://icom-ccpublications-online.org (accessed on 30 July 2022).

36. Eggert, G.; Bührer, A.; Barbier, B.; Euler, H.

When Glass and metal corrode together, II: A Black Forest

Schäppel and Further Occurences of Socoformacite. In Glass

and Ceramics Conservation 2010; Roemich, H., Ed.; Corning

Museum of Glass: Corning, NY, USA, 2010; pp. 174–180.

37. Eggert, G.; Haseloff, S.; Euler, H.; Barbier, B. When

Glass and Metal Corrode Together, III: The Formation of

Dicopper TrihydroxyFormate. In Proceedings of the ICOMCC 16th Ttriennial Conference, Lisbon, Portugal, 19–23

September 2011; Critério-Produção Grafica: Lisbon,

Portugal„ 2011; pp. 1–9. Available online: https://icom-ccpublications-online.org (accessed on 30 July 2022).

38. Euler, H.; Barbier, B.; Kirfel, A.; Haseloff, S.; Eggert,

G. Crystal Structure of Trihydroxydicopper Formate, Cu2 (OH)3

(HCOO). Z. Krist. New Cryst. Struct. 2009, 224, 609–610.

[CrossRef]

39. Keller, I.; Fischer, A. How Rare Is It? A Survey in the

Swiss National Museum. In Glass Deterioration Colloquium—

Extended Abstracts; Staatliche Akademie der Bildenden

Künste: Stuttgart, Germany, 2015; pp. 41–44.

40. Schorpp, A.; Braun, M.; Fischer, A.; Eggert, G. In

Search of Frequency: Glass-induced Metal Corrosion in the

Deutsches BergbauMuseum Bochum. METALLA 2019, 25,

33–41. Available online: https://metalla.org/index.php/

METALLA/article/view/9269/8810 (accessed on 30 July 2022).

[CrossRef]

41. Eggert, G. Saturated salt solutions in showcases:

Humidity control and pollutant absorption. Herit. Sci. 2022,

10, 54. [CrossRef]


Refbacks

  • 当前没有refback。