首页出版说明中文期刊中文图书环宇英文官网付款页面

赞比亚混凝土生产中使用的轮胎资源

Theresa Bwalya1, Michael Mulenga2, Chizyuka Chizyuka3
1、卢萨卡水开发和卫生部
2、赞比亚大学工程学院土木与环境工程系
3、赞比亚大学工程学院机械工程系

摘要


建筑业需要找到成本效益高的材料来提高混凝土的性能。水泥和骨料是混凝土生产的主要成分。这不
可避免地导致了对天然材料的不断开发,以生产混凝土生产所需的成分。其结果是原始原料的消耗和环境退化
的影响增加。在这项研究中,对在混凝土生产中使用再生橡胶轮胎作为粗骨料的部分替代品进行了研究。再生
废轮胎橡胶由于其重量轻、弹性好、能量吸收好、隔音隔热性能好,在建筑行业是一种很有前途的材料。文献
表明,随着轮胎含量的增加,橡胶化混凝土的强度显著降低。此外,据报道,可加工性和粘结性能也有所降低。
因此,在天然骨料的更换过程中,有必要控制混凝土的强度损失和其他参数。本研究旨在研究旧轮胎橡胶增强
混凝土的压缩、拉伸和粘结性能。实验室实验的测试结果能够确定机械、物理和耐久性特性,以及确定用废橡
胶代替普通骨料作为混凝土骨料的程度。通过用经处理的碎废轮胎橡胶替代选定百分比的骨料,生产了三种混
凝土,C15、C20 和 C25。粗骨料的替代率分别为 5%、15% 和 25%。碎橡胶骨料的尺寸从 20mm 到 19mm 不等。
对正常和处理过的橡胶改性混凝土的新拌混凝土混合物进行了坍落度、渗透性和容重测试。同样,对硬化混凝
土进行了抗压强度、抗拉劈裂强度、粘结试验和耐酸侵蚀耐久性试验。研究表明,橡胶改性混凝土优于标准混
凝土,粗骨料的替代率高达 15%。在 15% 的替换率下,仅确定了 0.1% 的强度损失。随着 25% 的更换,物业
明显减少。然而,橡胶改性混凝土在高温下逐渐开裂,表现更好。赞比亚有可能生产橡胶改性混凝土产品,从
而减轻过度开采天然骨料和废弃橡胶轮胎造成的不利影响。

关键词


废轮胎;聚合;混凝土;面包屑橡胶;替代比例;橡胶混凝土

全文:

PDF


参考


[1] Aiello, M. A. and F. Leuzzi. (2010). Waste tyre

rubberized concrete: Properties at fresh and hardened state.

Journal of Waste Management, 30, pp. 1699-1704.

[2] Albano, G., N. I. Fattuhi and L. A. Clarck (2005).

Rubberized concrete: a green structural material with

enhanced energy - dissipation capability, Construction

Building Materials, 10 (4), pp. 229-236.

[3] Al-Bakari, S., D. Kyser and N. Ravichandran. (2016).

Properties of chipped rubber roofing membrane and sand

mixtures for civil engineering applications, Journal of Building

Engineering, Journal of Building Engineering 7, pp. 103-113.

[4] Antil, Y. (2014). An Experimental Study on

Rubberized Concrete, International Journal of Emerging

Technology and Advanced Engineering, Volume 4, Issue 2,

pp. 309-316.

[5] Cairns, R., H. Kew and M. Kenny. (2013). The use

of recycled rubber tyres in concrete construction, Final 575

Report, University of Strathclyde, Glasgow, 91 p. 576.

[6] Eldin, N. N. and A. B. Senouci. (1993a). Rubber-tyre

particles as concrete aggregate, Journal of Material in Civil

Engineering, ASCE, 5 (4), pp. 478-496.

[7] Ganjian, E., M. Khorami and A. A. Maghsoudi. (2009).

Scraptyre-replacement for aggregate and filler in concrete,

Construction and Building Materials Journal, ELSEVIER, 23,

pp. 1828-1836.

[8] Goulias, D. G. and A. H. Ali. (1998). Cementbased materials containing shredded scrap truck tyre rubber,

Construction Building Materials, 10 (4), pp. 229–236.

[9] Guneyisi, E., M. Gesoglu and T. Ozturan, 2014.

Properties of rubberized concretes containing silica fume.

Journal of Cement and Concrete Research, ELSEVIER, 34, pp

2309-2317.

[10] Kaloush, K. M., M. Getahun and A. Belachew.

(2014). Study on Waste Tyre Rubber as Concrete Aggregate,

International Journal of Scientific Engineering and

Technology, Volume No. 3 Issue No. 4, pp: 433-436.

[11] Kumaran, K., G. G. Dimitrios and C. Al-Hosain.

(2008). NonDestructive Evaluation of Rubber Modified

Concrete, Infrastructure Condition Assessment, Rubber

Modified Concrete Evaluation, Polytechnic University, Six

Metro-, Brooklyn, NY, 11201, pp. 111-120.

[12] Nehdi, R. and K. Khan, 2015. Achieving

Sustainability of concrete by recycling of solid waste materials,

Mechanical Testing and Diagnosis, ISSN 2247-9635, (II),

Volume 1, pp 22-39.

[13] Saviour, N. M. (2012). Environmental impacts of Soil

and Sand Mining: A

Review. International Journal of Science, Environment

and Technology. 1, 3, pp. 125-134.

[14] Selvakumar. S. and R. Venkatakrishnaiah. (2015).

Effects of Concrete by using waste tyre rubber (Solid Waste),

International Journal of Applied Engineering Research ISSN

0973-4562 Volume 10, Number 5 pp. 13221-13230.

[15] World Business Council for Sustainable

Development (WBCSD) https://www.google.com/search?q=wor

ld+business+council+for+sustainable+development

[16] Yang, L., H. Zhu and Y. Li. (2015). Theoretical

Analysis of the Effect of Crumb Rubber on the Sectional

Ductility of Reinforced Concrete Beam, China. J. Basic Sci.

Eng., Volume 18 (4), pp. 609.

[17] Zheng, L., X. S. Huo and Y. Yuan. (2008).

Experimental investigation on dynamic properties of

rubberized concrete, Construction and Building Materials 22

(5), pp. 939–947.


Refbacks

  • 当前没有refback。