以废大理石粉为填料的浆液渗透纤维混凝土的性能
摘要
在我们的建筑业使用替代建筑材料和建筑技术非常重要。本文研究了以废大理石粉为填料的浆液渗透纤维混凝
土的性能。泥浆渗透纤维混凝土是一种特殊类型的钢纤维混凝土(SFC),具有高体积分数的纤维,它具有高
延性和高机械性能,特别适用于建筑结构构件的泥浆渗透纤维混凝土层压材料。对于普通混凝土,它可将混凝
土结构构件的强度提高 25%,对于纤维增强混凝土,可提高 40% 用于建筑物混凝土结构构件弱化的补救工程。
这种类型的混凝土使用由非常细的颗粒或填料组成的基质,以增强其纤维互锁性能。本文的目的是研究用大理
石废料作为细填料用于浆体渗透纤维混凝土生产的可能性。根据先前的研究,在混凝土生产中使用大理石废料
粉末填料将可流动混凝土的性能提高到一定限度,因此,为此目的,通过添加不同剂量的大理石废粉(0%、
10%、20%、30%、40%)(按重量计)制备了四种不同类型的混凝土。为了研究泥浆渗透纤维混凝土的性能,
共制备了 18 个样品,其中添加了不同附加范围(0%、10%、20%、30%、40%)的废大理石粉末,用于每个替
换 C-30,进行混凝土的拉伸和弯曲强度以及 UPV 试验,以检查样品的孔隙率。结果表明,成分(水泥、沙子)
的量减少了 10%,因为新鲜体积增加了 15%。最后进行 XRD 观察样品的微观结构。在泥浆渗透纤维混凝土中
使用废大理石粉末作为细填料将稠度和可加工性提高到 30%,抗弯强度显示出提高了 30% 的使用率,最佳使
用率比这个百分比高 30%。
关键词
全文:
PDF参考
[1] AcAhed Habib and Maan Habibcess, O. (2020).
We are IntechOpen, the world’s leading publisher of Open
Access books Built by scientists, for scientists TOP 1%
Sustainable Recycling of Marble Dust as Cement Replacement
in Concrete: Advances and Recent.
[2] Ahmad, J., Manan, A., Ali, A., M, T. I., Zaid, O., &
Ullah, R. (2020). Effects of Partially and Totally Substitution
of Marble Waste as a Fine Aggregate on Workability and
Mechanical Performance of Concrete. 10. https://doi.
org/10.37421/jcce.2020.10.367.
[3] Ali, A. S., & Riyadh, Z. (2018). Experimental and
Numerical Study on the Effects of Size and type of Steel Fibers
on the (SIFCON) Concrete Specimens. 13 (2), 1344–1353.
[4] Allam, M. E., Bakhoum, E. S., Ezz, H., & Garas, G.
L. (2016). influence of using granite waste on the mechanical
properties of green concrete. 11 (5), 2805–2811.
[5] Alyousef, R., Benjeddou, O., Soussi, C., Khadimallah,
M. A., & Mohamed, A. M. (2019). Effects of Incorporation
of Marble Powder Obtained by Recycling Waste Sludge and
Limestone Powder on Rheology, Compressive Strength, and
Durability of Self-Compacting Concrete. 2019.
[6] Ashish, D. K., Verma, S. K., Kumar, R., & Sharma,
N. (2016). Properties of concrete incorporating sand and
cement with waste marble powder. Advances in Concrete
Construction, 4 (2), 145–160. https://doi.org/10.12989/
acc.2016.4.2.145
[7] Cagin, G., Bilir, T., & Artir, R. (2016). Durability
Properties of Concrete Produced by Marble Waste as
Aggregate or Mineral Additives. Procedia Engineering, 161,
543–548. https://doi.org/10.1016/j.proeng.2016.08.689.
[8] Daniel, J. I., Ahmad, S. H., Arockiasamy, M., Ball,
H. P., Batson, G. B., Criswell, M. E., Dorfmueller, D. P.,
Fernandez, A. V, Gale, D. M., Antonio, J., Hackman, L. E.,
Hoff, G. C., Johnston, C. D., Leppert, M. A., Macdonald, C.
N., Mangat, P. S., Marsh, H. N., Mitchell, N. C., Molloy, H. J.,
… Zollo, R. F. (2002). Report on Fiber Reinforced Concrete
Reported byACI Committee 544 (Vol. 96, Issue Reapproved).
[9] Dobiszewska, M., Pichór, W., & Szołdra, P. (2019).
Effect of basalt powder addition on properties of mortar.
06002, 1–7.
[10] Espacios, H. R. Autores, L. O. S., Erica, Z., &
Renan, C. (2017). Análise e perspectivas de alternativas para
destinação de resíduos de rochas ornamentais através de
um estudo bibliométrico.
[11] Faiz, A. (2018). utilization of waste quarry dust and.
1–14.
[12] Hameed, D. H. (2019). Slurry Infiltrated Fiber
Concrete as Sustainable Solution for Defective Buildings. 37
(1), 24–28.
[13] Kumar, A., & Thakur, A. (2018). strength behaviour
of concrete. 9 (7), 1058–1065.
[14] Mittal, S., Sharma, R. K., & Yadav, P. (2016).
Practicality of Consumption of Waste Marble Dust As a
Substitution of Real Sand As a Changer in Concrete. 500–
502.
[15] Naedir, N., Tikur, E., & Ababa, A. (2017). Marble in
Ethiopia Marble has been mined in many.
[16] Pal, S., Pramanik, T., Singh, A., & Kumar, S. (2016).
Effects of Partial Replacement of Cement with Marble Dust
Powder on Properties of Concrete. 3 (03), 41–45.
[17] Pardeshi, S. (2017). repair, restoration and
strengthening of buildings. 4 (3), 121–124.
[18] Profile, S. E. E. (2015). effect of the lime content in
marble powder for producing high effect of the lime content
in marble powder for producing high strength concrete. April
2013.
[19] Raghunath, P. N., Suguna, K., Karthick, J.,
& Sarathkumar, B. (2019). Mechanical and durability
characteristics of marblepowder-based high-strength
concrete. 26, 3159–3164.https://doi.org/10.24200/
sci.2018.4953.1005.
[20] Rahim, M. A., Ghazaly, Z., Nurazira, R., Mamat, R.,
Azizan, M. A., Isa, N. F., & Shahidan, S. (2016). Experimental
Study of Slurry Infiltrated Fiber Reinforced Concrete
Experimental Study of Slurry Infiltrated Fiber Reinforced
Concrete. January. https://doi.org/10.4028/www.scientific.net/
MSF.857.363
[21] Raj, E., Ishwar, P., Sharma, C., & Pbl, P. (2015).
Utilization of “Marble Slurry” In Cement Concrete
Replacing Fine Agreegate. 1, 55–58.
[22] Sampath, P., & Asha, P. (2019). Strength and
Durability Properties of SIFCON with Silica Fume and Waste
Binding Wire. 3, 917–923.
[23] Search, H., Journals, C., Contact, A., Iopscience, M.,
Conf, I. O. P., Environ, E., & Address, I. P. (2017). Effects of
slag on flexural strength of slurry infiltrated fibrous concrete.
012036.
[24] Singam, P. S. R., & Susmitha, N. (2018). An
Experimental study on Behaviour of Slurry Infiltrated Fibrous
Concrete (SIFCON) Produced by Partial Replacement of
Cement with Metakaolin and Fine Aggregate with Robosand.
4290–4302.
[25] S. Soundarya, S. Suresh Babu, V. S. Satheesh, & P.
G. Student. (2018). Flexural behavior of SIFCON beams under
three point loading. 3 (3), 73–77.
[26] Tc odimegwa. (2018). the use of industrial wastes as
filler in concrete /mortar.
[27] Upadhyay, H., Shah, P., & George, E. (2011).
Testing and Mix Design Method of Self- Compacting Concrete
Hardik. May, 3–6.
[28] Uysal, M. (2018). The Use of Waste Maroon Marble
Powder and Iron Oxide Pigment in the Production of Coloured
SelfCompacting Concrete. 2018.
[29] Vijayakumar, M., & Kumar, P. D. (2017). study on
strength properties of sifcon. 235–238.
[30] Zhang, J., Cai, D., Wang, T., Hu, Q., & Li, K. (2018).
Experimental analysis on the effects of artificial marble waste
powder on concrete performance. 347–362. https://doi.
org/10.3166/ACSM.42.347-362.
Refbacks
- 当前没有refback。