首页出版说明中文期刊中文图书环宇英文官网付款页面

以废大理石粉为填料的浆液渗透纤维混凝土的性能

Dawit Beza
埃塞俄比亚

摘要


在发展中国家的建筑业中,传统建筑材料和传统建筑技术的使用使建筑成本高昂,对环境有害,因此
在我们的建筑业使用替代建筑材料和建筑技术非常重要。本文研究了以废大理石粉为填料的浆液渗透纤维混凝
土的性能。泥浆渗透纤维混凝土是一种特殊类型的钢纤维混凝土(SFC),具有高体积分数的纤维,它具有高
延性和高机械性能,特别适用于建筑结构构件的泥浆渗透纤维混凝土层压材料。对于普通混凝土,它可将混凝
土结构构件的强度提高 25%,对于纤维增强混凝土,可提高 40% 用于建筑物混凝土结构构件弱化的补救工程。
这种类型的混凝土使用由非常细的颗粒或填料组成的基质,以增强其纤维互锁性能。本文的目的是研究用大理
石废料作为细填料用于浆体渗透纤维混凝土生产的可能性。根据先前的研究,在混凝土生产中使用大理石废料
粉末填料将可流动混凝土的性能提高到一定限度,因此,为此目的,通过添加不同剂量的大理石废粉(0%、
10%、20%、30%、40%)(按重量计)制备了四种不同类型的混凝土。为了研究泥浆渗透纤维混凝土的性能,
共制备了 18 个样品,其中添加了不同附加范围(0%、10%、20%、30%、40%)的废大理石粉末,用于每个替
换 C-30,进行混凝土的拉伸和弯曲强度以及 UPV 试验,以检查样品的孔隙率。结果表明,成分(水泥、沙子)
的量减少了 10%,因为新鲜体积增加了 15%。最后进行 XRD 观察样品的微观结构。在泥浆渗透纤维混凝土中
使用废大理石粉末作为细填料将稠度和可加工性提高到 30%,抗弯强度显示出提高了 30% 的使用率,最佳使
用率比这个百分比高 30%。

关键词


细填料;废大理石粉尘;抗压强度;抗弯强度和抗拉强度

全文:

PDF


参考


[1] AcAhed Habib and Maan Habibcess, O. (2020).

We are IntechOpen, the world’s leading publisher of Open

Access books Built by scientists, for scientists TOP 1%

Sustainable Recycling of Marble Dust as Cement Replacement

in Concrete: Advances and Recent.

[2] Ahmad, J., Manan, A., Ali, A., M, T. I., Zaid, O., &

Ullah, R. (2020). Effects of Partially and Totally Substitution

of Marble Waste as a Fine Aggregate on Workability and

Mechanical Performance of Concrete. 10. https://doi.

org/10.37421/jcce.2020.10.367.

[3] Ali, A. S., & Riyadh, Z. (2018). Experimental and

Numerical Study on the Effects of Size and type of Steel Fibers

on the (SIFCON) Concrete Specimens. 13 (2), 1344–1353.

[4] Allam, M. E., Bakhoum, E. S., Ezz, H., & Garas, G.

L. (2016). influence of using granite waste on the mechanical

properties of green concrete. 11 (5), 2805–2811.

[5] Alyousef, R., Benjeddou, O., Soussi, C., Khadimallah,

M. A., & Mohamed, A. M. (2019). Effects of Incorporation

of Marble Powder Obtained by Recycling Waste Sludge and

Limestone Powder on Rheology, Compressive Strength, and

Durability of Self-Compacting Concrete. 2019.

[6] Ashish, D. K., Verma, S. K., Kumar, R., & Sharma,

N. (2016). Properties of concrete incorporating sand and

cement with waste marble powder. Advances in Concrete

Construction, 4 (2), 145–160. https://doi.org/10.12989/

acc.2016.4.2.145

[7] Cagin, G., Bilir, T., & Artir, R. (2016). Durability

Properties of Concrete Produced by Marble Waste as

Aggregate or Mineral Additives. Procedia Engineering, 161,

543–548. https://doi.org/10.1016/j.proeng.2016.08.689.

[8] Daniel, J. I., Ahmad, S. H., Arockiasamy, M., Ball,

H. P., Batson, G. B., Criswell, M. E., Dorfmueller, D. P.,

Fernandez, A. V, Gale, D. M., Antonio, J., Hackman, L. E.,

Hoff, G. C., Johnston, C. D., Leppert, M. A., Macdonald, C.

N., Mangat, P. S., Marsh, H. N., Mitchell, N. C., Molloy, H. J.,

… Zollo, R. F. (2002). Report on Fiber Reinforced Concrete

Reported byACI Committee 544 (Vol. 96, Issue Reapproved).

[9] Dobiszewska, M., Pichór, W., & Szołdra, P. (2019).

Effect of basalt powder addition on properties of mortar.

06002, 1–7.

[10] Espacios, H. R. Autores, L. O. S., Erica, Z., &

Renan, C. (2017). Análise e perspectivas de alternativas para

destinação de resíduos de rochas ornamentais através de

um estudo bibliométrico.

[11] Faiz, A. (2018). utilization of waste quarry dust and.

1–14.

[12] Hameed, D. H. (2019). Slurry Infiltrated Fiber

Concrete as Sustainable Solution for Defective Buildings. 37

(1), 24–28.

[13] Kumar, A., & Thakur, A. (2018). strength behaviour

of concrete. 9 (7), 1058–1065.

[14] Mittal, S., Sharma, R. K., & Yadav, P. (2016).

Practicality of Consumption of Waste Marble Dust As a

Substitution of Real Sand As a Changer in Concrete. 500–

502.

[15] Naedir, N., Tikur, E., & Ababa, A. (2017). Marble in

Ethiopia Marble has been mined in many.

[16] Pal, S., Pramanik, T., Singh, A., & Kumar, S. (2016).

Effects of Partial Replacement of Cement with Marble Dust

Powder on Properties of Concrete. 3 (03), 41–45.

[17] Pardeshi, S. (2017). repair, restoration and

strengthening of buildings. 4 (3), 121–124.

[18] Profile, S. E. E. (2015). effect of the lime content in

marble powder for producing high effect of the lime content

in marble powder for producing high strength concrete. April

2013.

[19] Raghunath, P. N., Suguna, K., Karthick, J.,

& Sarathkumar, B. (2019). Mechanical and durability

characteristics of marblepowder-based high-strength

concrete. 26, 3159–3164.https://doi.org/10.24200/

sci.2018.4953.1005.

[20] Rahim, M. A., Ghazaly, Z., Nurazira, R., Mamat, R.,

Azizan, M. A., Isa, N. F., & Shahidan, S. (2016). Experimental

Study of Slurry Infiltrated Fiber Reinforced Concrete

Experimental Study of Slurry Infiltrated Fiber Reinforced

Concrete. January. https://doi.org/10.4028/www.scientific.net/

MSF.857.363

[21] Raj, E., Ishwar, P., Sharma, C., & Pbl, P. (2015).

Utilization of “Marble Slurry” In Cement Concrete

Replacing Fine Agreegate. 1, 55–58.

[22] Sampath, P., & Asha, P. (2019). Strength and

Durability Properties of SIFCON with Silica Fume and Waste

Binding Wire. 3, 917–923.

[23] Search, H., Journals, C., Contact, A., Iopscience, M.,

Conf, I. O. P., Environ, E., & Address, I. P. (2017). Effects of

slag on flexural strength of slurry infiltrated fibrous concrete.

012036.

[24] Singam, P. S. R., & Susmitha, N. (2018). An

Experimental study on Behaviour of Slurry Infiltrated Fibrous

Concrete (SIFCON) Produced by Partial Replacement of

Cement with Metakaolin and Fine Aggregate with Robosand.

4290–4302.

[25] S. Soundarya, S. Suresh Babu, V. S. Satheesh, & P.

G. Student. (2018). Flexural behavior of SIFCON beams under

three point loading. 3 (3), 73–77.

[26] Tc odimegwa. (2018). the use of industrial wastes as

filler in concrete /mortar.

[27] Upadhyay, H., Shah, P., & George, E. (2011).

Testing and Mix Design Method of Self- Compacting Concrete

Hardik. May, 3–6.

[28] Uysal, M. (2018). The Use of Waste Maroon Marble

Powder and Iron Oxide Pigment in the Production of Coloured

SelfCompacting Concrete. 2018.

[29] Vijayakumar, M., & Kumar, P. D. (2017). study on

strength properties of sifcon. 235–238.

[30] Zhang, J., Cai, D., Wang, T., Hu, Q., & Li, K. (2018).

Experimental analysis on the effects of artificial marble waste

powder on concrete performance. 347–362. https://doi.

org/10.3166/ACSM.42.347-362.


Refbacks

  • 当前没有refback。