首页出版说明中文期刊中文图书环宇英文官网付款页面

将地电方法与动态导出的地质力学参数集成在尼日利亚 横河州部分地区预测含水层存储特性

Fidelis Abija
地质力学、能源和环境可持续性中心;河流州立大学地球科学与空间技术学院

摘要


预测地下岩石的储集财产是地下水勘探和长期取水井规划潜力评价的基本问题。含水层中的水通过弹
性储存和重力排水进行储存和 / 或释放。含水层储存参数传统上是根据抽水试验数据确定的,在钻井之前,这
些数据很少可用。利用经验公式 S=3.0×10-6b,根据岩石岩性和含水层厚度估算承压含水层的储水量(S),但
S=Ssb 忽略了孔隙度和压缩性的影响。储量方程假设所有含水岩石具有恒定的比储量,尽管比储量直接取决于
岩石孔隙度,最重要的是,岩石颗粒的压缩性因岩性而异。在这项研究中,解释了 31 个位置的场电阻测量得
出的视电阻率数据,以推断地质电层岩性和厚度。为了确定岩石颗粒的压缩性以计算比储存量,使用解释的表
层岩石的平均密度来估算含水层深度的垂直应力。结果表明,岩石矿物颗粒压缩性在 7.915×10-7至9.235×10-5/
Pa 之间,孔隙度在 0.08 至 1.64 之间,风化覆盖层和砂岩孔隙度较高;比存储量在 8.32×10-6 至 1.80×10-3 之
间,存储量在 3.161×10-6 到 1.96×10-3。很明显,结果表明,岩石类型以及不同含水层的蓄水量会导致比蓄水
量的不同。

关键词


含水层;地电层;地质力学;特定存储;存储性

全文:

PDF


参考


[1] Green, D. H. and Wandg, H. F. (1990). Specific

storage as poroelastic coefficient. Water Resources research,

26 (7). Pp. 1631 – 1637. Doi: 10.1029/WR026i007p01631.

[2] Fetter, C. W. (1990). Applied Hydrogeology,

2nd Edn. New Delhi: CBS Publishers and Distributors.

991pages.

[3] Younger, P. L. (1993). Simple generalized methods

for estimating aquifer storage parameters. Quarterly Journal

of Engineering Geology, 26. Pp. 127–135.

[4] Shendi, E. H. (2008). Electrical Prospecting

Methods. Department of Geology, Faculty of Science, Suez

Canal University Monograph 126 pp.

[5] Wright, E. P. (1990). Basement aquifers in Africa.

Commonwealth Science Council Tech. Paper. 273 (2)

pp.349–363.

[6] Abija, F. A., Essien, N. U., Abam, T. K. S and

Ifedotun, A. I. (2019). Assessment of aquifer hydraulic

properties, groundwater potential; and vulnerability

integrating geoelectric methods with SRTM-DEM and

LANDSAT-7 ETM lineament analysis in parts of Cross

River State, Nigeria. London Journal of Research in Science:

Natural and Formal. Vol. 19, Issue 4, Compilation 1.

[7] Orajaka, S. O., 1964. Geology of the Obudu area,

Ogoja Province, Eastern Nigeria. Le Naturalist Canadien,

XC1 (3): 73-78.

[8] Umeje, A. C., 1988. The Precambrian of part of

southeastern Nigeria: a magmatic and tectonic study. In: P.

O. Oluyide (coordinator), Precambrian Geology of Nigeria.

Geol. Surv. Nigeria. Publ., 69-75.

[9] Fitton J. G. (1980). The Benue trough and

Cameroon line: A Migrating rift System in West Africa.

Earth and Planetary Science Letters, 51 (1980) 132-138.

[10] Ekwueme, B. N., 1990. Petrology of Southern

Obudu Plateau, Bamenda Massif, Southeastern Nigeria. In:

G. Rocc; and M. Deschamps (Coordinators) Recent Data in

African Sciences, CIFEG Occas. Publi. 22: 155-158.

[ 11 ] U k w a n g , E . E . , 1 9 9 8 . P e t r o l o g y a n d

Geochemistry of Uwortung-Utugwang area, Obudu Plateau,

southeasternNigeria. Unpubl. M. Sc. Thesis, Univ. Calabar,

Nigeria, 87 pp.

[12] Ukaegbu, V. O., 2003. The Petrology and

Geochemistry of parts of Obudu Plateau Bamenda massif,

southeastern Nigeria. Unpubl. Ph. D. Thesis, Univ. Port

Harcourt Nigeria. 321 pp.

[13] Ekwueme, B. N., Nyong, E. E. and Petters, S. W.,

1995. Geological Excursion Guide Book to Oban massif,

Calabar Flank and Mamfe Embayment, Southeastern

Nigeria. DecFord Publi., Calabar, Nigeria, 36.

[14] Reyment, R. A., (1965). Aspects of Geology of

Nigeria. Ibadan Univ. Press, Ibadan.

[15] Freeze, R. A. and Cherry, J. A. (1979).

Groundwater. New Jersey: Prentice Hall.

[16] Lohman, S. W. (1972). Groundwater hydraulics.

USGS professional paper, Vol. 7, pp. 708.

[17] Todd, D. K. (1980). Groundwater Hydrology, 2nd

edn. New York: John Wiley and Sons. 552pages.

[18] Donaldson, E. C. (1995). Simulation of compaction

due to fluid withdrawal. In: Chilingorian, G. H., E. C.

[19] Hoek, E. and Brown, E. T. (1980). Underground

excavation in rock. Institution of Mining and Metallurgy,

London. 527 pp.

[20] www.geopixel.co.uk.

[21] Terzaghi, K. V. 1924. Die Theorie der

hydrodynamischen Spannungserscheinungen und ihr

erdbautechnisches Anwendungsgebiet. Proc., First

International Congress for Applied Mechanics, Delft, The

Netherlands, Pp 22–26 April, 288–294.

[22] Biot, M. A. 1941. General theory of three -

dimensional consolidation. J. Appl. Phys. 12 (2): Pp 155–

164. http://dx.doi.org/10.1063/1.1712886.

[23] Biot, M. A. 1956. General solutions of the

equations of elasticity and consolidation for a porous

material. Journal of Applied Mechanics, 23 Pp 91–96.

[24] Geertsma, J. (1957) The effect of fluid pressure

decline on volumetric changes of porous rocks. Society of

Petroleum Engineers, SPE-728-G.

[25] Skempton, A. W. (1961) Effective Stress in Soils,

Concrete and Rocks, in Selected Papers on Soil Mechanics,

pp. 106–118.

[26] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J.

(1990). A petrophysical interpretation using the velocity of P

and S waves (Full waveform sonic log). The Log Analysis,

355, November - December.

[27] Archie, G. E., (1942). The Electrical Resistivity Log

as an Aid in Determining some Reservoir Characteristics.

Trans. Am. Inst. Min. Eng. Vol. 146, pp. 54-62.

[28] Bernard, J. (2003), “Short notes on the principles

of geophysical methods for groundwater investigations”,

Unpublished notes, Terraplus, 8 pp.

[29] Schlumberger. 1985. Well evaluation conference,

Schlumberger Technical Services INC Vol. 2, Pp 11–124.


Refbacks

  • 当前没有refback。