将地电方法与动态导出的地质力学参数集成在尼日利亚 横河州部分地区预测含水层存储特性
摘要
性储存和重力排水进行储存和 / 或释放。含水层储存参数传统上是根据抽水试验数据确定的,在钻井之前,这
些数据很少可用。利用经验公式 S=3.0×10-6b,根据岩石岩性和含水层厚度估算承压含水层的储水量(S),但
S=Ssb 忽略了孔隙度和压缩性的影响。储量方程假设所有含水岩石具有恒定的比储量,尽管比储量直接取决于
岩石孔隙度,最重要的是,岩石颗粒的压缩性因岩性而异。在这项研究中,解释了 31 个位置的场电阻测量得
出的视电阻率数据,以推断地质电层岩性和厚度。为了确定岩石颗粒的压缩性以计算比储存量,使用解释的表
层岩石的平均密度来估算含水层深度的垂直应力。结果表明,岩石矿物颗粒压缩性在 7.915×10-7至9.235×10-5/
Pa 之间,孔隙度在 0.08 至 1.64 之间,风化覆盖层和砂岩孔隙度较高;比存储量在 8.32×10-6 至 1.80×10-3 之
间,存储量在 3.161×10-6 到 1.96×10-3。很明显,结果表明,岩石类型以及不同含水层的蓄水量会导致比蓄水
量的不同。
关键词
全文:
PDF参考
[1] Green, D. H. and Wandg, H. F. (1990). Specific
storage as poroelastic coefficient. Water Resources research,
26 (7). Pp. 1631 – 1637. Doi: 10.1029/WR026i007p01631.
[2] Fetter, C. W. (1990). Applied Hydrogeology,
2nd Edn. New Delhi: CBS Publishers and Distributors.
991pages.
[3] Younger, P. L. (1993). Simple generalized methods
for estimating aquifer storage parameters. Quarterly Journal
of Engineering Geology, 26. Pp. 127–135.
[4] Shendi, E. H. (2008). Electrical Prospecting
Methods. Department of Geology, Faculty of Science, Suez
Canal University Monograph 126 pp.
[5] Wright, E. P. (1990). Basement aquifers in Africa.
Commonwealth Science Council Tech. Paper. 273 (2)
pp.349–363.
[6] Abija, F. A., Essien, N. U., Abam, T. K. S and
Ifedotun, A. I. (2019). Assessment of aquifer hydraulic
properties, groundwater potential; and vulnerability
integrating geoelectric methods with SRTM-DEM and
LANDSAT-7 ETM lineament analysis in parts of Cross
River State, Nigeria. London Journal of Research in Science:
Natural and Formal. Vol. 19, Issue 4, Compilation 1.
[7] Orajaka, S. O., 1964. Geology of the Obudu area,
Ogoja Province, Eastern Nigeria. Le Naturalist Canadien,
XC1 (3): 73-78.
[8] Umeje, A. C., 1988. The Precambrian of part of
southeastern Nigeria: a magmatic and tectonic study. In: P.
O. Oluyide (coordinator), Precambrian Geology of Nigeria.
Geol. Surv. Nigeria. Publ., 69-75.
[9] Fitton J. G. (1980). The Benue trough and
Cameroon line: A Migrating rift System in West Africa.
Earth and Planetary Science Letters, 51 (1980) 132-138.
[10] Ekwueme, B. N., 1990. Petrology of Southern
Obudu Plateau, Bamenda Massif, Southeastern Nigeria. In:
G. Rocc; and M. Deschamps (Coordinators) Recent Data in
African Sciences, CIFEG Occas. Publi. 22: 155-158.
[ 11 ] U k w a n g , E . E . , 1 9 9 8 . P e t r o l o g y a n d
Geochemistry of Uwortung-Utugwang area, Obudu Plateau,
southeasternNigeria. Unpubl. M. Sc. Thesis, Univ. Calabar,
Nigeria, 87 pp.
[12] Ukaegbu, V. O., 2003. The Petrology and
Geochemistry of parts of Obudu Plateau Bamenda massif,
southeastern Nigeria. Unpubl. Ph. D. Thesis, Univ. Port
Harcourt Nigeria. 321 pp.
[13] Ekwueme, B. N., Nyong, E. E. and Petters, S. W.,
1995. Geological Excursion Guide Book to Oban massif,
Calabar Flank and Mamfe Embayment, Southeastern
Nigeria. DecFord Publi., Calabar, Nigeria, 36.
[14] Reyment, R. A., (1965). Aspects of Geology of
Nigeria. Ibadan Univ. Press, Ibadan.
[15] Freeze, R. A. and Cherry, J. A. (1979).
Groundwater. New Jersey: Prentice Hall.
[16] Lohman, S. W. (1972). Groundwater hydraulics.
USGS professional paper, Vol. 7, pp. 708.
[17] Todd, D. K. (1980). Groundwater Hydrology, 2nd
edn. New York: John Wiley and Sons. 552pages.
[18] Donaldson, E. C. (1995). Simulation of compaction
due to fluid withdrawal. In: Chilingorian, G. H., E. C.
[19] Hoek, E. and Brown, E. T. (1980). Underground
excavation in rock. Institution of Mining and Metallurgy,
London. 527 pp.
[20] www.geopixel.co.uk.
[21] Terzaghi, K. V. 1924. Die Theorie der
hydrodynamischen Spannungserscheinungen und ihr
erdbautechnisches Anwendungsgebiet. Proc., First
International Congress for Applied Mechanics, Delft, The
Netherlands, Pp 22–26 April, 288–294.
[22] Biot, M. A. 1941. General theory of three -
dimensional consolidation. J. Appl. Phys. 12 (2): Pp 155–
164. http://dx.doi.org/10.1063/1.1712886.
[23] Biot, M. A. 1956. General solutions of the
equations of elasticity and consolidation for a porous
material. Journal of Applied Mechanics, 23 Pp 91–96.
[24] Geertsma, J. (1957) The effect of fluid pressure
decline on volumetric changes of porous rocks. Society of
Petroleum Engineers, SPE-728-G.
[25] Skempton, A. W. (1961) Effective Stress in Soils,
Concrete and Rocks, in Selected Papers on Soil Mechanics,
pp. 106–118.
[26] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J.
(1990). A petrophysical interpretation using the velocity of P
and S waves (Full waveform sonic log). The Log Analysis,
355, November - December.
[27] Archie, G. E., (1942). The Electrical Resistivity Log
as an Aid in Determining some Reservoir Characteristics.
Trans. Am. Inst. Min. Eng. Vol. 146, pp. 54-62.
[28] Bernard, J. (2003), “Short notes on the principles
of geophysical methods for groundwater investigations”,
Unpublished notes, Terraplus, 8 pp.
[29] Schlumberger. 1985. Well evaluation conference,
Schlumberger Technical Services INC Vol. 2, Pp 11–124.
Refbacks
- 当前没有refback。