首页出版说明中文期刊中文图书环宇英文官网付款页面

核壳结构 TiO2的合成、结构及应用研究

朱 彦北

摘要


摘要:由于钛白粉成本低、天然丰产、环境友好、丰富的多晶体、良好的化学稳定性和优异的光学性能,在物理、 化学和材料科学领域具有重要意义。壳核结构钛白粉的合成已经投入了大量的工作,在其表面包覆一层二氧化钛 (TiO2)而制得。由于核壳结构 TiO2 极高的比表面积、较大的孔隙体积、可调节的孔隙结构和形貌以及纳米尺度效 应,显示出巨大的潜力。本文系统评价了新型核壳型 TiO2 材料的合成方法,讨论了它们独特的组成结构,总结了它 们的应用,并对未来的研究提出了展望。

关键词


二氧化钛;核壳结构;合成方法;组成结构

全文:

PDF


参考


[1]黄锐,菅泽,韩生.二氧化钛在储能中的设计和应用

[J].应用技术学报,2022,22(03):235-241.

[2]顿硕攀,郭续更.上转换纳米材料在染料敏化太阳

能 电 池 中 的 应 用 研 究 进 展 [J]. 化 学 研

究,2022,33(04):327-336.

[3]李歌,马子然,赵俊平,王宝冬.黑二氧化钛的制备及

其在催化领域的应用[J].工业催化,2022,30(06):1-20.

[4]张子琦,程璐,刘文凤.核-壳结构纳米复合电介质

储能特性研究进展[J].绝缘材料,2022,55(05):1-9.

[5]王佳赫,刘大勇,刘伟,王林,董彪.纳米 TiO2 光催化

抗菌应用的研究进展[J].应用化学,2022,39(04):629-646.

[6]任浩,于然波.中空多壳层结构 TiO2 及其复合材料

的合成及应用[J].科学通报,2019,64(34):3546-3561.

[7]李大玉,张文韬,张超.不同种类金属掺杂改性 TiO2

材 料 光 催 化 性 能 的 研 究 进 展 [J]. 材 料 导

报,2019,33(23):3900-3907.

[8]陈昱,王京钰,李维尊,鞠美庭.新型二氧化钛基光催

化材料的研究进展[J].材料工程,2016,44(03):103-113.

[9]郝贵敏,贾春阳,涂亮亮,张家强.TiO2光催化核壳材

料的研究进展[J].材料导报,2011,25(13):25-30.

[10]彭子青,谌伟庆,马洪波,黄思富,石秋杰.核壳结构

纳 米 复 合 材 料 在 催 化 中 的 应 用 [J]. 化 工 进

展,2010,29(08):1461-1467.

[11]宁向莉,张颖,王伟.多层核-壳结构复合微球材料

制备研究进展[J].化学通报,2009,72(11):962-972.

[12]谢添华,柳松.核壳型二氧化钛复合纳米材料研究

进展[J].无机盐工业,2007(07):8-11.

[13]Tian M, Mahjouri-Samani M, Eres G, et al.

Structure and formation mechanism of black TiO2

nanoparticles[J]. ACS nano, 2015, 9(10): 10482-10488.

[14]Li J, Liu C H, Li X, et al. Unraveling the origin of

visible light capture by core – shell TiO2 nanotubes[J].

Chemistry of Materials, 2016, 28(12): 4467-4475.

[15]Zhang W, Tian Y, He H, et al. Recent advances in

the synthesis of hierarchically mesoporous TiO2 materials for

energy and environmental applications[J]. National Science

Review, 2020, 7(11): 1702-1725.

[16]Chen X, Liu L, Yu P Y, et al. Increasing solar

absorption for photocatalysis with black hydrogenated

titanium dioxide nanocrystals[J]. Science, 2011, 331(6018):

746-750.

[17]Sun L, Li Z, Li Z, et al. Design and mechanism of

core–shell TiO2 nanoparticles as a high-performance photothermal agent[J]. Nanoscale, 2017, 9(42): 16183-16192. [18]Yan Z, Liu L, Tan J, et al. One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries[J]. Journal of Power Sources, 2014, 269: 37-45. [19]Wang Z, Yang C, Lin T, et al. H‐doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance[J]. Advanced Functional Materials, 2013, 23(43): 5444-5450. [20]Yang Y, Liu G, Irvine J T S, et al. Enhanced photocatalytic H2 production in core–shell engineered rutile TiO2[J]. Advanced Materials, 2016, 28(28): 5850-5856. [21]Han B, Wei W, Chang L, et al. Efficient visible light photocatalytic CO2 reforming of CH4[J]. ACS Catalysis, 2016, 6(2): 494-497. [22]Han B, Hu Y H. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water[J]. The Journal of Physical Chemistry C, 2015, 119(33): 18927-18934. [23]Wu M C, Chen C H, Huang W K, et al. Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO2 nanofibers with core-shell structure[J]. Scientific reports, 2017, 7(1): 1-12. [24]Guo H, Tian D, Liu L, et al. Core–shell TiO2 microsphere with enhanced photocatalytic activity and improved lithium storage[J]. Journal of Solid State Chemistry, 2013, 201: 137-143.




DOI: http://dx.doi.org/10.12361/2661-3476-04-10-105753

Refbacks

  • 当前没有refback。