块体Bi2Te3基热电材料的制备及其研究进展
摘要
关键词
全文:
PDF参考
[1]Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008,320 (5876), 634.[2]Hu, L.; Zhang, Y.; Wu, H.; Liu, Y.; Li, J.; He, J.; Ao, W.; Liu, F.; Pennycook Stephen, J.; Zeng, X., Synergistic Compositional–Mechanical–Thermal Effects Leading to a Record High zT in n-Type V2VI3 Alloys Through Progressive Hot Deformation. Advanced Functional Materials 2018,28 (0), 1803617.[3]Xu, Z. J.; Hu, L. P.; Ying, P. J.; Zhao, X. B.; Zhu, T. J., Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater. 2015,84 (0), 385-392.[4]Deng, R.; Su, X.; Zheng, Z.; Liu, W.; Yan, Y.; Zhang, Q.; Dravid, V. P.; Uher, C.; Kanatzidis, M. G.; Tang, X., Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries. Sci. Adv. 2018,4 (6), eaar5606.[5]Pan, Y.; Qiu, Y.; Witting, I.; Zhang, L.; Fu, C.; Li, J.-W.; Huang, Y.; Sun, F.-H.; He, J.; Snyder, G. J.; Felser, C.; Li, J.-F., Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance. Energy Environ. Sci. 2019,12 (2), 624-630.[6]Wang, S.; Li, H.; Lu, R.; Zheng, G.; Tang, X., Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology 2013,24 (28), 285702.[7]Zhang, T.; Jiang, J.; Xiao, Y.; Zhai, Y.; Yang, S.; Xu, G., In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance. Acs Appl Mater Inter 2013,5 (8), 3071-3074.[8]陈媛媛; 齐雅青; 刘佳林; 刘锐, 热压法制备BiTe 基 温 差 电 材 料 研 究 . 电 源 技 术 2016,40 (8), 1636-1639.[9]蔡新志; 朱刘, 热压 P 型 Bi2Te3 基合金的结构演化和热电性能. 热加工工艺 2018,47 (13), 79-83.[10]Xiong, C.; Shi, F.; Wang, H.; Cai, J.; Zhao, S.; Tan, X.; Hu, H.; Liu, G.; Noudem, J. G.; Jiang, J., Achieving High Thermoelectric Performance of n-Type Bi2Te2.79Se0.21 Sintered Materials by Hot-Stacked Deformation. Acs Appl Mater Inter 2021,13 (13), 15429-15436.[11]Jiang, J.; Chen, L.; Bai, S.; Yao, Q., Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering. Journal of alloys and compounds 2005,390 (1), 208-211.[12]Zhao, L. D.; Zhang, B. P.; Li, J. F.; Zhang, H. L.; Liu, W. S., Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 2008,10 (5), 651-658.[13]Guo, J.; Floyd, R.; Lowum, S.; Maria, J.-P.; Herisson de Beauvoir, T.; Seo, J.-H.; Randall, C. A., Cold Sintering: Progress, Challenges, and Future Opportunities. Annu. Rev. Mater. Res. 2019,49 (1), 275-295.[14]Lu, X.; Lu, W.; Gao, J.; Liu, Y.; Huang, J.; Yan, P.; Fan, Y.; Jiang, W., Processing High-Performance Thermoelectric Materials in a Green Way: A Proof of Concept in Cold Sintered PbTe0.94Se0.06. Acs Appl Mater Inter 2022,14 (33), 37937-37946.[15]Zhu, B.; Su, X.; Shu, S.; Luo, Y.; Tan, X. Y.; Sun, J.; Sun, D.; Zhang, H.; Zhang, Q.; Suwardi, A.; Zheng, Y., Cold-Sintered Bi2Te3-Based Materials for Engineering Nanograined Thermoelectrics. ACS Applied Energy Materials 2022,5 (2), 2002–2010.
DOI: http://dx.doi.org/10.12361/2661-3476-04-11-111734
Refbacks
- 当前没有refback。