首页出版说明中文期刊中文图书环宇英文官网付款页面

一种基于微电网需求响应的竞价策略中心模型

江 叶峰
国家电网江苏省电力公司电力调控控制中心

摘要


由于风力发电和光伏发电的不确定性和有限的可预测性,这些参与大多数电力市场的资源在市场结算期间会受到重大偏差处罚。为了平衡不可预测的风力和光伏功率变化,系统运营商需要安排额外的储备。本文提出了风电和光伏能源的最优综合参与模型,包括需求响应模型、存储设备模型、可调度的分布式发电模型(微电网或虚拟微电网),以增加其在市场内的收益。该市场在交付时间前3-7 小时考虑,以便更新合同能源量,以减少微电网的发电偏差。在制定微电网生产商和负荷的投标策略时,考虑了一种随机规划方法。该优化模型的特点是对多个情景进行分析,同时处理风电和光伏发电、市场内部和不平衡价格三种不确定性。为了预测这些不确定性变量,采用了基于神经模糊的方法。历史数据用于预测未来价格以及调整市场中的风电和光伏发电产量。同时,考虑了基于预测误差和真实历史数据的概率方法,对风电和光伏发电未来的即时电价和不平衡电价进行了估算。

关键词


市场竞价策略;储能微电网;需求响应

全文:

PDF


参考


[1] Anbazhagan S, Kumarappan N. Day-ahead deregulated electricity market price forecasting using neural network input featured by DCTO. Energy Convers Manage 2014;78:711-9.

[2] Sharma Kailash Chand, Bhakar Rohit, Tiwari HP. Strategic bidding for wind power producers in electricity markets. Energy Convers Manage 2014;86: 259-67.

[3] Bitar E, Rajagopal R, Khargonekar P, Poolla K, Varaiya P. Bringing wind energy to market. IEEE Trans Power Syst 2012;27(3):1225-35.

[4] Pousinhoa HMI, Mendesc VMF, Catalão JPS. A stochastic programming approach for the development of offering strategies for a wind power producer. Electric Power Syst Res 2012;89:45–53.

[5] Guo Z, Zhao W, Lu H, Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012;37:241-9.

[6] Guo Zhenhai, Chi Dezhong, Jie Wu, Zhang Wenyu. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm. Energy Convers Manage 2014;84:140–51.

[7] Shayeghi H, Ghasemi A. Day-ahead electricity prices forecasting by a modifified CGSA technique and hybrid WT in LSSVM based scheme. Energy Convers Manage 2013;74:482–91.

[8] Svalina I, Galzina V, Lujic´1 R, Šimunovic´ G. An adaptive network-based fuzzy inference system (ANFIS) for the forecasting: The case of close price indices. Expert Syst Appl 2013;40(15):6055–63.

[9] Anbazhagan S, Kumarappan N. Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Convers Manage 2014;78:711–9.

[10] Lin WM, Gowa HJ, Tsai MT. Electricity price forecasting using enhanced robability neural network. Energy Convers Manage 2010;51:2707–14.

[11] Moreno MA, Bueno M, Usaola J. Evaluating risk-constrained bidding strategies in adjustment spot markets for wind power producers. Electrical Power Energy Syst 2012;43:703–11

[12] Khodayar MF, Barati M, Shahidehpour Mohammad. Integration of high reliability distribution system in microgrid operation. IEEE Trans Smart Grid 2012;3:1997–2006.

[13] Mohammadi J, Rahimi-Kian A, Ghazizadeh MS. Aggregated wind power and flflexible load offering strategy.IET Renew Power Gener 2011;5(6):439–47.




DOI: http://dx.doi.org/10.18686/dljsyj.v2i3.26625

Refbacks

  • 当前没有refback。