首页出版说明中文期刊中文图书环宇英文官网付款页面

运动障碍中的数字技术:更新,应用和挑战

艾玛 ·沃, 泰勒 ·迈, 露丝 ·利, 约瑟 夫·, 斯特 拉·
罗切斯特大学神经病学系

摘要


审查数字技术提供了在临床环境之外客观,频繁和敏感的疾病评估的机会。本文回顾了最近关于应用在运
动障碍中的数字技术的文献,重点是帕金森病(PD)和亨廷顿舞蹈症。最近的研究已经证明,数字技术能够区分
PD患者和没有患上 PD的个体,识别 PD高危人群,量化特定的运动特征,预测 PD中的临床事件,为临床管理提供
信息,并产生新的见解。数字技术在改变运动障碍的临床研究和护理方面具有巨大的潜力。然而,需要做更多的工
作来更好地验证现有的数字措施,包括在新的人群中,并开发新的,更全面的数字措施,超越电机特征。

关键词


数字技术;智能手机;可穿戴设备;帕金森病;亨廷顿舞蹈症;运动障碍

全文:

PDF


参考


[1]Botros A, Schütz N, Camenzind M, et al. Longterm home-monitoring sensor technology in patients with

Parkinson’s disease-acceptance and adherence. Sensors

(Basel, Switzerland). 2019; 19: 5169.

[2]Silva de Lima AL, Hahn T, Evers LJW, et al.

Feasibility of large-scale deployment of multiple wearable

sensors in Parkinson’s disease. PLoS One. 2017; 12:

e0189161.

[3]Lee W, Evans A, Williams DR. Validation of

a smartphone application measuring motor function in

Parkinson’s disease. J Parkinsons Dis. 2016; 6: 371–82.

[4]Bot BM, Suver C, Neto EC, et al. The mPower study,

Parkinson disease mobile data collected using ResearchKit.

Sci Data. 2016; 3: 160011.

[5]Espay AJ, Hausdorff JM, Sanchez-Ferro A, et al.

A roadmap for implementation of patient-centered digital

outcome measures in Parkinson’s disease obtained using

mobile health technologies. Mov Disord. 2019; 34: 657–63.

[6]Badawy R, Hameed F, Bataille L, et al. Metadata

concepts for advancing the use of digital health technologies in

clinical research. Digit Biomark. 2019; 3: 116–32.

[7]Lamont RM, Daniel HL, Payne CL, et al. Accuracy of

wearable physical activity trackers in people with Parkinson’s

disease. Gait Posture. 2018; 63: 104–8.

[8]Jeon H, Lee W, Park H, et al. Highaccuracy automatic

classification of Parkinsonian tremor severity using machine

learning method. Physiol Meas. 2017; 38: 1980–99.

[9]López-Blanco R, Velasco MA, Méndez-Guerrero A,

et al. Smartwatch for the analysis of rest tremor in patients with

Parkinson’s disease. J Neurol Sci. 2019; 401: 37–42.

[10]Gatsios D, Antonini A, Gentile G, et al. Feasibility

and utility of mHealth for the remote monitoring of parkinson

disease: randomized controlled trial. JMIR Mhealth Uhealth.

2020.

[11]Lee CY, Kang SJ, Hong SK, et al. A validation

study of a smartphone-based finger tapping application for

quantitative assessment of bradykinesia in Parkinson’s

disease. PLoS One. 2016; 11: e0158852.




DOI: http://dx.doi.org/10.12361/2661-3476-04-06-83150

Refbacks

  • 当前没有refback。