首页出版说明中文期刊中文图书环宇英文官网付款页面

循环经济的绿色混凝土:可持续性、耐久性 和结构特性综述

阿巴 塔尔, 穆拉 特·, 瓦尔 马赫, 埃尔 萨迪
卡塔尔大学土木工程学院

摘要


传统波特兰水泥混凝土PCC的一个主要问题与全球水泥和天然粗骨料NCA的大量消耗有关这一
方面导致自然资源枯竭另一方面导致生态问题。因此绿色混凝土GC的概念通过用补充胶凝材料SCM
代替水泥如磨碎的高炉矿渣GGBFS、粉煤灰FA、硅灰SF和偏高岭土MK或用再生粗骨料代替
NCA可以在解决 PCC的环境威胁方面发挥重要作用。目前越来越多的文献强调在具体应用中实施 GC的重要
性。因此本文通过同行评议文献数据库 Scopus进行了系统的文献回顾。共审查了 114篇论文涵盖以下领域1
GC的可持续性优势2GC在抗压强度方面的机械性能3GC在多种环境暴露下的耐久性能4结构 GC在
剪切和弯曲下的大型钢筋梁中的性能以及5将先前测试的梁的 GC剪切能力与主要设计规范和建议模型进行比
较的分析研究。根据这篇综述读者将能够选择使用其中一种 SCM的最佳水泥替代水平以达到适合特定混凝土应
用的特定混凝土强度范围。此外耐久性性能分析表明不建议在暴露于高于 400℃的温度下的混凝土中添加 SCM。
此外注意到在混凝土混合物中将 GGBFS与 FA结合在长期抵抗硫酸盐侵蚀方面优于 PCC。从实验测试的梁与可用
的混凝土抗剪设计方程的数据比较中得出的最引人注目的观察结果是梁具有高达 70%的 FA替代OPC或高达 100%
的RCA替代NCA由日本土木工程师协会JSCE-1997、美国混凝土协会ACI318-19和加拿大标准协会CSAA23.3-14的方程式保守地预测。

关键词


绿色混凝土;水泥;粒状高炉矿渣;粉煤灰;硅灰;偏高岭土

全文:

PDF


参考


[1]Blomsma F., Brennan G. The Emergence of Circular

Economy: A New Framing Around Prolonging Resource

Productivity. J. Ind. Ecol. 2017;21:603–614. doi: 10.1111/

jiec.12603.

[2]Deschamps J., Simon B., Tagnit-Hamou A., Amor

B. Is open-loop recycling the lowest preference in a circular

economy? Answering through LCA of glass powder in

concrete. J. Clean. Prod. 2018;185:14–22. doi: 10.1016/

j.jclepro.2018.03.021.

[3]Khan A.A., Arshad S., Mohsin M. Population

Growth and Its Impact on Urban Expansion: A Case Study

of Population Growth and Its Impact on Urban Expansion:

A Case Study of Bahawalpur, Pakistan. Univers. J. Geosci.

2014;2:229–241. doi: 10.13189/ujg.2014.020801.

[4]Guney T. Population Growth and Sustainable

Development in Developed- Developing Countries: An Iv (2sls)

Approach. J. Fac. Econ. Adm. Sci. 2017;22:1255–1277.

[5]Tafheem Z., Khusru S., Nasrin S. Environmental

Impact of Green Concrete in Practice ICMERE2011-PI-069;

Proceedings of the 1st International Conference on Mechanical

Engineering and Renewable Energy (ICMERE); Chittagong,

Bangladesh. 22–24 December 2011.

[6]B.V.V. Reddy, K.S. Jagadish, Embodied energy of

common and alternative building materials and technologies,

Energy Build. 35 (2003) 129–137, https://doi.org/10.1016/

S0378-7788(01)00141-4.

[7]J.S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino,

E.M. Gartner, Sustainable development and climate change

initiatives, Cem. Concr. Res. 38 (2008) 115–127, https://doi.

org/10.1016/j.cemconres.2007.09.008.

[8]S. Karthik, P. Rao, P. Awoyera, R. Gobinath, R. Karri,

Alkalinity and strength properties of concrete containing macro

silica and ground granulated blast furnace slag, IET Digit.

Libr. (2018) 4.

[9]P. Murthi, P. Awoyera, P. Selvaraj, D. Dharsana, R.

Gobinath, Using silica mineral waste as aggregate in a green

high strength concrete: workability, strength, failure mode, and

morphology assessment, Aust. J. Civ. Eng. (2018) 1–7, https://

doi.org/10.1080/14488353.2018.1472539.

[10]V. Karthika, P.O. Awoyera, I.I. Akinwumi, R.

Gobinath, R. Gunasekaran, N. Lokesh, Structural properties of

lightweight self-compacting concrete made with pumice stone

and mineral admixtures, Rev. Rom. Mater. Rom. J. Mater. 48

(2018).




DOI: http://dx.doi.org/10.12361/2661-3476-04-07-94697

Refbacks

  • 当前没有refback。