表面处理对使用水泥基体的CFRP约束的自密实、 高性能、纤维增强混凝土的影响
摘要
行业中,各种材料和技术越来越多地结合在一起,以实现例如增强对结构动态冲击的抵抗力,或扩大选定建筑元
件的工作范围,这意味着显着增加毁灭的能量。因此,作者创建了混合元素,称为复合元素,由混凝土和钢筋组
成。本研究探讨了混凝土表面的制备对使用水泥基体的碳纤维(CF)增强的高性能、自密实、纤维增强混凝土
(HPSCFRC)性能的影响。在一般的层压工艺中,这是使用环氧树脂预成型的。然而,环氧树脂对相对较低的温度
敏感,因此作者试图在层压过程中使用水泥基体。当将硬化混凝土与新鲜混凝土基质或混合物连接时,混凝土表面
的类型很重要。在这项研究中,考虑了三种类型的混凝土表面,例如未准备、打磨和研磨。本文使用 3D激光扫描仪
检查所有表面,以确定Abbott-Firestone剖面材料份额曲线。在这项研究中,圆柱形混凝土试件用一层、两层和三层
层压板加固。然后对它们进行单轴压缩试验。测试结果表明,在层压过程中使用水泥基体,由于其效率低,在加固
具有高抗压强度的混凝土构件时不应使用。此外,混凝土的磨削表面与 CF钢筋的配合效果最好。
关键词
全文:
PDF参考
[1]Yang, W.; Gang, W.; Guofen, L. Performance of
circular concrete-filled fiber-reinforced polymer-steel
composite tube columns under axial compression. J. Reinf.
Plast. Compos. 2014, 33, 1911–1928.
[2]Mayer, P.; Kaczmar, J. Wła´sciwo´sci i Zastosowania
Włókien W˛eglowych i Szklanych. Tworzywa Sztuczne i
Chemia 2008, 6, 52–56.
[3]Aidy Ali, Z.; Shaker, R.; Khalina, A.; Sapuan, S.M.
Development of Anti-Ballistic Board from Ramie Fiber.
Polym.-Plast. Technol. Eng. 2011, 50, 622–634.
[4]Yeung, K.K.H.; Rao, K.P. Mechanical Properties of
Kevlar-49 Fibre Reinforced Thermoplastic Composites. Polym.
Polym. Compos. 2012, 20, 411–424.
[5]Manigandan, S. Determination of Fracture Behavior
under Biaxial Loading of Kevlar 149. Appl. Mech. Mater.
2015, 766–767, 1127–1132.
[6]Qui, Y.; Schwartz, P. Micromechanical behavior of
Kevlar-149/S-glass hybrid seven-fiber microcomposites:
I. Tensile strength of the hybrid composite. Compos. Sci.
Technol. 1993, 47, 289–301.
[7]Al-Kheetan, M.J.; Rahman, M.M.; Balakrishna,
M.N.; Chamberlain, D.A. Performance Enhancement of SelfCompacting Concrete in Saline Environment by Hydrophobic
Surface Protection. Can. J. Civ. Eng. 2019, 46, 677–686.
[8]Katzer, J.; Kobaka, J.; Ponikiewski, T. Influence of
Crimped Steel Fibre on Properties of Concrete Based on an
Aggregate Mix of Waste and Natural Aggregates. Materials
2020, 13, 1906.
[9]Kostrzanowska-Siedlarz, A.; Gołaszewski, J.
Rheological Properties of High Performance Self-Compacting
Concrete: Effects of Composition and Time. Constr. Build.
Mater. 2016, 115, 705–715.
[10]Maria Cruz, A.; Javier, P. Self-Compacted Concrete
with Self-Protection and Self-Sensing Functionality for Energy
Infrastructures. Materials 2020, 13, 1106.
[11]Biolzi, L.; Cattaneo, S. Response of steel fiber
reinforced high strength concrete beams: Experiments and
code predictions. Cem. Concr. Compos. 2017, 1–13.
DOI: http://dx.doi.org/10.12361/2661-3522-04-08-106294
Refbacks
- 当前没有refback。