二氧化碳、温室效应和全球变暖:从Arrhenius和 Callendar的开创性工作到今天的地球系统模型
摘要
具体取决于未来的温室气体排放量。考虑到气候系统的复杂性,这些预测有多可靠?气候研究的早期历史提供了对
回答这个问题所需的理解和科学的洞察。我们检查了Svante Arrhenius(1859-1927)和Guy Stewart Callendar(1898-
1964)开发的行星能量预算的数学量化,并构建了后者的经验近似值,我们证明它在回顾性预测整个过程中的全球变
暖方面是成功的二十世纪的。该近似值随后用于计算21世纪气候变暖对大气温室气体增加的反应,预测温度升高是
由一组ESM产生的结果的下限(如政府间专家组的最新评估中所述)气候变化)。这个结果可以解释如下。气候系
统在概念上很复杂,但其核心是辐射传输的物理定律。这种基本的或“核心”物理在数学上计算起来相对简单,如
Callendar的计算所示,导致基线变暖的定量预测。ESM不仅包括物理核心,还包括气候反馈,这些反馈将不确定性
引入预测的幅度,但不包括符号:正(变暖的放大)。因此,ESM对世纪末全球变暖的预测从根本上是值得信赖的:基
于众所周知的辐射传输物理学的定量稳健基线变暖,以及由于气候反馈导致的额外变暖。因此,这些预测提供了一个
令人信服的案例,即全球气候将继续经历显着变暖,以应对不断向大气排放的二氧化碳和其他温室气体。
关键词
全文:
PDF参考
[1]AbdElgawad H., Farfan-Vignolo E. R., de Vos
D., Asard H. (2015). Elevated CO2 mitigates drought and
temperature-induced oxidative stress differently in grasses and
legumes. Plant Sci. 231 1–10. 10.1016/j.plantsci.2014.11.001
[2]Apel K., Hirt H. (2004). Reactive oxygen species:
metabolism, oxidative stress, and signal transduction.
Annu. Rev. Plant Biol. 55 373–399. 10.1146/annurev.
arplant.55.031903.141701
[3]Asgher M., Per T. S., Anjum S., Khan M., Masood A.,
Verna S., et al. (2017).“Contribution of glutathione in heavy
metal stress tolerance in plants,”in Reactive Oxygen Species
and Antioxidant Systems in Plants: Role and Regulation under
Abiotic Stress eds Khan M., Khan N. (Singapore: Springer; )
10.1007/978-981-10-5254-5_12
[4]Bai X., Yang L., Tian M., Chen J., Shi J., Yang Y.,
et al. (2011). Nitric oxide enhances desiccation tolerance of
recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation
and carbonylation. PLoS One 6:e20714. 10.1371/journal.
pone.0020714
[5]Begara-Morales J. C., Sánchez-Calvo B., Chaki M.,
Valderrama R., Mata-Pérez C., López-Jaramillo J., et al.
(2014). Dual regulation of cytosolic ascorbate peroxidase (APX)
by tyrosine nitration and S -nitrosylation. J. Exp. Bot. 65
527–538. 10.1093/jxb/ert396
[6]Andrew A. Lacis, Gavin A. Schmidt, David Rind, and
Reto A. Ruedy,“Atmospheric CO2: Principal Control Knob
Governing Earth's Temperature,”Science 330 (2010): 356–
59.
[7]IPCC, Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change
(Cambridge: Cambridge University Press, 2013). Warming is
specified relative to the reference period, 1986–2005, and the
figures represent ensemble-mean results of the ESMs.
[8]D. A. Stainforth, M. R. Allen, E. R. Tredge, and L.
A. Smith,“Confidence, Uncertainty and Decision-Support
Relevance in Climate Predictions,”Philosophical Transactions
of the Royal Society A 365 (2007): 2145–61.
[9]Liisa Antilla,“Climate of Scepticism: US Newspaper
Coverage of the Science of Climate Change,”Global
Environmental. Change 15 (2005): 338–52; Maxwell T.
Boykoff,“Lost in Translation? United States Television News
Coverage of Anthropogenic Climate Change, 1995–2004,”
Climate Change 86 (2008): 1–11.
[10]Gregor Betz,“Are Climate Models Credible Worlds?
Prospects and Limitations of Possibilistic Climate Prediction,”
European Journal for Philosophy of Science 5 (2015): 191–
215.
DOI: http://dx.doi.org/10.12361/2661-3654-04-01-63
Refbacks
- 当前没有refback。