首页出版说明中文期刊中文图书环宇英文官网付款页面

氮化碳基光催化材料用于砷去除的研究进展

李 萌萌1, 次仁 卓嘎2, 聂  瑀2, 谭  欣*3
1、西藏大学理学院
2、天津大学环境科学与工程学院
3、西藏大学理学院;天津大学环境科学与工程学院

摘要


光催化处理技术能很好地利用阳光,具有良好的效率和环境友好性,因此被广泛研究用于污水修复。
g-C3N4 是一种优秀的光催化材料,目前已有一定的研究报道。文章主要综述了近年来氮化碳基光催化材料在除砷方
向的研究状况,为今后该类光催化材料在水中除砷的研究应用提供一定的参考思路。

关键词


氮化碳;砷;光催化氧化;改性

全文:

PDF


参考


[1] Sarkar A ,Paul B ,et al.The global menace of arsenic

and its conventional remediation - A critical review[J].

Chemosphere, 2016, 158:37-49.

[2] Sarkar S , Greenleaf J E , Gupta A , et al. Sustainable

engineered processes to mitigate the global arsenic crisis in

drinking water: challenges and progress.[J]. Annual Review of

Chemical and Biomolecular Engineering, 2012, 3(1):497-517.

[3] Hsiung T L ,Wei L W ,Huang H L , et al. In situ

X‐ray absorption spectroscopic studies of photocatalytic

oxidation of As(III) to less toxic As(V) by TiO2 nanotubes[J].

Journal of Synchrotron Radiation, 2021, 28(3):849-853.

[4] Marta I. Mechanisms of removal of heavy metals and

arsenic from water by TiO2-heterogeneous photocatalysis[J].

Pure & Applied Chemistry, 2015, 87(6):557-567.

[5] Orha C ,Lazau C , Pode R , et al. Simultaneous

removal of humic acid and arsenic(III) from drinking

water using TiO2-powdered activated carbon[J]. Journal of

environmental protection and ecology, 2018, 19(1):39-47.

[6] Fu J ,Yu J ,Jiang C , et al.g‐C3N4‐based

heterostructured photocatalysts[J]. Advanced Energy

Materials, 2018, 8(3).1701503-1701534.

[7] Gong Y ,Li M ,Li H , et al. Graphitic carbon

nitride polymers: promising catalysts or catalyst supports

for heterogeneous oxidation and hydrogenation[J]. Green

Chemistry,2015, 17(2):715-736.

[8] 王钊 . 石墨相氮化碳基光催化材料用于砷 / 铬去

除的研究 [D]. 武汉 . 华中科技大学 ,2020.

[9] Ma C X , Hao Y ,Zhao J , et al. Graphitic carbon

nitride (C3N4) reduces cadmium and arsenic phytotoxicity and

accumulation in rice[J]. Nanomaterials, 2021,11(4):839.

[10] Yin H, Kong M, Gu X, et al.Removal of arsenic from

water by porous charred granulated attapulgite-supported

hydrated iron oxide in bath and column modes [J]. Journal of

Cleaner Production, 2017,166: 88-97.

[11] Zakhar R, Derco J, Cacho F, et al. An overview of

main arsenic removal technologies [J]. Acta Chimica Slovaca,

2018,11(2): 107-113.

[12] Jaggard K W, Qi A, Ober E S, et al. Possible changes

to arable crop yields by 2050 [J]. Philosophical Transactions

of the Royal Society B-Biological Sciences, 2010,365(1554):

2835-2851.

[13] Lemonte J J, Stuckey J W, Sanchez J Z, et al.

Sea level rise induced arsenic release from historically

contaminated coastal soils [J]. Environmental Science &

Technology, 2017,51(11): 5913-5922.

[14] Niazi N K, Burton E D, et al. Arsenic sorption

to nanoparticulate mackinawite (FeS): An examination of

phosphate competition [J]. Environmental Pollution, 2016,218:

111-117.

[15] Kumar R, Patel M,Singh P, et al. Emerging

technologies for arsenic removal from drinking water in rural

and peri-urban areas: Methods, experience from, and options

for Latin America[J]. Science of The Total Environment,

2019,694:133427-133427.

[16] Shrestha R, Ban S,Devkota S, et al.Technological

trends in heavy metals removal from industrial wastewater: A

review [J]. Journal of Environmental Chemical Engineering,

2021,9(4):105688-105706.

[17] Ji S M, Tiwari A P, Kim H Y, et al.PAN-ZnO//PAN_xfffe_Mn3O4/CeO2 Janus nanofibers: Controlled fabrication and

enhanced photocatalytic properties under UV and visible light

[J]. Chemical Physics Letters,2020,759:138050-138057.

[18] Ji S M , Tiwari A P , Oh H J , et al. ZnO/Ag

nanoparticles incorporated multifunctional parallel side by

side nanofibers for air filtration with enhanced removing

organic contaminants and antibacterial properties[J]. Colloids

and Surfaces A Physicochemical and Engineering Aspects,

2021, 621:126564-126573.

[19] Wan J , Klein J , Simon S , et al. As(III) oxidation

by Thiomonas arsenivorans in up-flow fixed-bed reactors

coupled to As sequestration onto zero-valent iron-coated

sand[J]. Water Research, 2010, 44(17):5098-5108.

[20] Kim, J G, Park, S M, Lee M E,et al. Photocatalytic

co-oxidation of As(III) and Orange G using urea-derived

g-C3N4 and persulfate[J]. Chemosphere, 2018, 212:193-199.

[21] Wang Z , Murugananthan M , Zhang Y . Graphitic

carbon nitride based photocatalysis for redox conversion of

arsenic(III) and chromium(VI) in acid aqueous solution[J].

Applied Catalysis B: Environmental, 2019,248: 349-356.

[22] Kim J G , Kim H B , Choi J H , et al. Bifunctional

iron-modified graphitic carbon nitride (g-C3N4) for

simultaneous oxidation and adsorption of arsenic[J].

Environmental Research, 2020, 188:109832.

[23] Wei K, Lie K,Yan, LS et al. One-step fabrication of

g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions

with atomic level hybridization and their application in the

multi-component synergistic photocatalytic systems[J].

Applied Catalysis B Environmental, 2018,222:88-98.

[24] Jiang X, Xing Q, Luo X,et al. Simultaneous

photoreduction of Uranium(VI) and photooxidation of Arsenic

(III) in aqueous solution over g-C3N4/TiO2 heterostructured

catalysts under simulated sunlight irradiation[J]. Applied

Catalysis B Environmental, 2018,228:29-38.

[25] Ouyang L , Zhang Y ,Wang Y , et al. Insights into

the Adsorption and Photocatalytic Oxidation Behaviors of

Boron-Doped TiO2 /g-C3N4 Nanocomposites toward As(III)

in Aqueous Solution[J]. Industrial & Engineering Chemistry

Research, 2021, 60(19):7003-7013.

[26] Kim J G , Kim H B , Choi J H , et al. Bifunctional

iron-modified graphitic carbon nitride (g-C3N4) for

simultaneous oxidation and adsorption of arsenic[J].

Environmental Research, 2020, 188:109832.

[27] Sun S , Ji C ,Wu L , et al. Facile one-pot

construction of α-Fe2O3/g-C3N4 heterojunction for arsenic

removal by synchronous visible light catalysis oxidation and

adsorption[J]. Materials Chemistry and Physics, 2017,194:1-

8.

[28] Chen C , Xu J , Yang Z , et al. One-pot synthesis

of ternary zero-valent iron/phosphotungstic acid/g-C3N4

composite and its high performance for removal of arsenic(V)

from water[J]. Applied Surface Science, 2017, 425:423-431.

[29] Chi S , Ji C , Sun S , et al. Magnetically Separated

meso-g-C3N4/Fe3O4: Bifuctional composites for removal

of arsenite by simultaneous visible-light catalysis and

adsorption[J]. Industrial & Engineering Chemistry Research,

2016, 55(46):12060-12067.

[30] Manamohan T, Sandip P, Garudadhwaj H et

al.Hematite decorated functional porous graphitic carbon

nitride binary nanohybrid: Mechanistic insight into the

formation and arsenic adsorption study[J]. Applied Surface,

2022 , 583:152443-152457.

[31] Wang C , Dai Y , Fu X , et al. A novel layer_xfffe_layer crossed structure of bentonite/g-C3N4 for enhanced

photocatalytic oxidation of arsenic(III) in a wide pH range[J].

Surfaces and interfaces, 2021,26:101365-101371.

[32] Lei D, Xue J ,Peng X,et al. Oxalate enhanced

synergistic removal of chromium(VI) and arsenic(III)

over ZnFe2O4/g-C3N4: Z-scheme charge transfer pathway

and photo-Fenton like reaction[J]. Applied Catalysis B:

Environmental, 2020, 282:119578-119590.

[33] Kim J G ,Kim H B ,Yoon G S , et al. Simultaneous

oxidation and adsorption of arsenic by one-step fabrication of

alum sludge and graphitic carbon nitride (g-C3N4)[J]. Journal

of Hazardous Materials, 2019, 383:121138-121146.

[34] Zhao, Z, Jun Z, Zhu S,et al.Efficient piezo-catalytic

oxidation of aqueous As(III) over crystalline carbon nitride

poly(heptazine imide). Chemical Engineering Journal,

2022,449:137868-137879.




DOI: http://dx.doi.org/10.12361/2661-3743-05-02-117821

Refbacks

  • 当前没有refback。