首页出版说明中文期刊中文图书环宇英文官网付款页面

光合细菌的固定化、资源回收及发展前景综述

申 向禹, 孔 志辉, 郭 昊祎, 王 文霄
华北水利水电大学环境与市政工程学院

摘要


光合细菌(PSB)废水处理是一种环境友好、可持续的环境修复和生物资源回收技术。由于 PSB 的固有特性,
包括沉降不足、生物量损失等,必须实施必要的控制策略。废水系统中固定化 PSB 为各种微生物在表面或内部均匀
分布提供了渗透性微环境,并成功地屏蔽了 PSB 免受外界干扰,提高了其生物利用度,从而有效地解决了上述突出
问题。论文介绍了 PSB 中各种固定方式和高价值物质的合成;系统阐述了 PSB 固定化应用瓶颈以及改性;总结了近
年来对 PSB 固定处理新出现污染物的尝试。为微生物固定化技术在废水处理回用中的应用提供参考。

关键词


光合细菌;固定化;资源回收

全文:

PDF


参考


[1] 张光明,孟帆,曹可凡,等.光合细菌污水资源化研究进展[J].工业

水处理,2020,40(3):1-6.

[2] Kube M, Fan L, Roddick F. Alginate-immobilised algal

wastewater treatment enhanced by species selection[J]. Algal

Research-Biomass Biofuels and Bioproducts, Amsterdam:

Elsevier,2021(54):102219.

[3] Lim J H K, Gan Y Y, Ong H C, et al. Utilization of microalgae

for bio-jet fuel production in the aviation sector: Challenges

and pe rspective [J ]. Renewable and Sustainable Ene rgy

Reviews,2021(149):111396.

[4] Deng C, Lin R, Kang X, et al. Improving gaseous biofuel yield

from seaweed through a cascading circular bioenergy system

integrating anaerobic digestion and pyrolysis[J]. Renewable and

Sustainable Energy Reviews,2020(128):109895.

[5] Tawfik A, Ali M, Danial A, et al. 2-biofuels (H2 and CH4)

production from anaerobic digestion of biscuits wastewater: Experimental study and techno-economic analysis[J]. Journal of

Water Process Engineering,2021(39):101736.

[6] Puyol D, Batstone D J, Hülsen T, et al. Resource Recovery from

Wastewater by Biological Technologies: Opportunities, Challenges,

and Prospects[J]. Frontiers in Microbiology,2017(7).

[7] Hu X. Application o f alginate immobilized mic roalgae

in treating real food industrial wastewater and design of

annular photobioreactor: A proof-of-concept study[J]. Algal

Research,2021(7).

[8] Jiang Y, Yang F, Dai M, et al. Application of microbial

imm o bilizati o n tec h n ol o g y f o r reme diati o n o f C r (V I )

contamination: A review[J]. Chemosphere,2022(286):131721.

[9] Cheng J, Wu X, Jin B, et al. Coupling o f Immobilized

Photosynthetic Bacteria with a Graphene Oxides/PSF Composite

Membrane for Textile Wastewater Treatment: Biodegradation

Pe r fo rmance and Memb rane Anti -Fouling Behavio r [J ].

Membranes,2021,11(3):226.

[10] Peng M, Xu H, Yang G, et al. Purifying Heavily Polluted River

Water Using Immobilized Native Photosynthetic Bacteria[J].

Journal of Environmental Engineering, Reston: Asce-Amer Soc

Civil Engineers,2021,147(8):04021021.

[11] Sagir E, Alipour S. Photofermentative hydrogen production

by immobilized photosynthetic bacteria: Current perspectives

a n d c halle n ge s [ J ]. Re newa ble a n d S u stai na ble E ne rg y

Reviews,2021(141):110796.

[12] Luo Q, Chen Z, Li Y, et al. Highly Efficient and Recyclable

Shewanella xiamenensis-Grafted Graphene Oxide/Poly(vinyl

alcohol) Biofilm Catalysts for Increased Cr(VI) Reduction[J].

ACS Sustainable Chemistry & Engineering, American Chemical

Society,2019,7(14):12611-12620.

[13] 王翠翠,卢海凤,张光明,等.近红外光对光合细菌利用废水累积高

价值产物的影响[J].工业水处理,2023:1-21.

[14] Fu X, Qiao Y, Xue J, et al. Analyses of community structure

and role of immobilized bacteria system in the bioremediation

process of diesel pollution seawater[J]. Science of The Total

Environment,2021(799):149439.

[15] Zhao W, Zhang G. Optimization of photosynthetic bacteria

wastewater treatment and study of microbial species diversity[J].

Desalination and Water Treatment, Hopkinton: Desalination

Publ,2014,52(28-30):5357-5365.

[16] 姜淑敏,汪吉霞,王悦佳,等.光合细菌产氢研究进展[J].现代农业

科技,2023(19):136-142.

[17] Chandra R, Mohan S V. Enhanced bio-hydrogenesis by co-culturing photosynthetic bacteria with acidogenic process: Augmented darkphoto fermentative hybrid system to regulate volatile fatty acid

inhibition[J]. International Journal of Hydrogen Energy, Oxford:

Pergamon-Elsevier Science Ltd,2014,39(14):7604-7615.

[18] McKinlay J B, Harwood C S. Photobiological production of

hydrogen gas as a biofuel[J]. Current Opinion in Biotechnolo

gy,2010,21(3):244-251.

[19] Narayanan S, Gowthami M. Cyanide degradation by consortium of

bacterial species isolated from Sago industry effluent[J]. Journal of

Environmental Treatment Techniques,2015(3):41-46.

[20] Rezania S, Din M F M, Taib S M, et al. The efficient role of

aquatic plant (water hyacinth) in treating domestic wastewater in

continuous system[J]. International Journal of Phytoremediation,

Philadelphia: Taylor and Francis Inc,2016,18(7):679-685.[21] Lu H, He S, Zhang G, et al. Periodic oxygen supplementation drives

efficient metabolism for enhancing valuable bioresource production

in photosynthetic bacteria wastewater treatment[J]. Bioresource

Technology, Oxford: Elsevier Sci Ltd,2022(347):126678.

[22] Wang C, Wang J, He X, et al. Effective removal of Mn(Ⅱ) from

acidic wastewater using a novel acid tolerant fungi Aspergillus

sp. MF1 via immobilization[J]. Journal of Hazardous Materials

Advances,2023(10):100301.

[23] Behera S, Das S. Environmental impacts of microplastic and role

of plastisphere microbes in the biodegradation and upcycling of

microplastic[J]. Chemosphere,2023(334):138928.

[24] Zhuang S, Wang J. Inte raction between antibiotics and

microplastics: Recent advances and perspective[J]. Science of The

Total Environment,2023(897):165414.




DOI: http://dx.doi.org/10.12361/2661-3743-05-12-150484

Refbacks

  • 当前没有refback。