首页出版说明中文期刊中文图书环宇英文官网付款页面

微藻混凝技术研究进展

宛  勇
同济大学环境科学与工程学院

摘要


二十世纪以来,藻华爆发导致生物毒素的污染影响了很多主要国家的饮用水安全供应。富营养化造成的藻
华爆发会导致水域生态环境破坏,近年来的研究报告显示目前世界范围内藻华爆发态势仍不容乐观。藻细胞混凝技
术是目前除藻技术的重要环节,并能为具有发展生物质资源的微藻解决关键的采收成本问题。本文梳理了混凝技术
的研究进展,对比了不同混凝技术的特点,提出了目前存在的问题和未来的研究方向。

关键词


除藻;微藻采收;混凝

全文:

PDF


参考


[1]Reid A J, Carlson A K, Creed I F, et al. Emerging

threats and persistent conservation challenges for freshwater

biodiversity [J]. Biol Rev, 2019, 94(3): 849-73.

[2]Carpenter S R, Caraco N F, Correll D L, et al. Nonpoint

pollution of surface waters with phosphorus and nitrogen [J].

Ecol Appl, 1998, 8(3): 559-68.

[3]Qin B, Gao G, Zhu G, et al. Lake eutrophication and its

ecosystem response [J]. Chinese Science Bulletin, 2013, 58(9):

961-70.

[4]Knuckey R M, Brown M R, Robert R, et al. Production

of microalgal concentrates by flocculation and their assessment

as aquaculture feeds [J]. Aquacultural Engineering, 2006,

35(3): 300-13.

[5]Wu Z, Zhu Y, Huang W, et al. Evaluation of

flocculation induced by pH increase for harvesting microalgae

and reuse of flocculated medium [J]. Bioresource Technol,

2012, 110: 496-502.

[6]Mollah M Y A, Morkovsky P, Gomes J A G, et

al. Fundamentals, present and future perspectives of

electrocoagulation [J]. J Hazard Mater, 2004, 114(1-3): 199-

210.

[7]Chen X M, Chen G H, Yue P L. Separation of

pollutants from restaurant wastewater by electrocoagulation [J].

Sep Purif Technol, 2000, 19(1-2): 65-76.

[8]Essadki A H, Bennajah M, Gourich B, et al.

Electrocoagulation/electroflotation in an external-loop airlift

reactor - Application to the decolorization of textile dye

wastewater: A case study [J]. Chemical Engineering and

Processing-Process Intensification, 2008, 47(8): 1211-23.

[9]Ge J T, Qu J H, Lei P J, et al. New bipolar

electrocoagulation-electroflotation process for the treatment of

laundry wastewater [J]. Sep Purif Technol, 2004, 36(1): 33-9.

[ 1 0 ] Z u o Q , C h e n X , L i W , e t a l . C o m b i n e d

electrocoagulation and electroflotation for removal of fluoride

from drinking water [J]. J Hazard Mater, 2008, 159(2-3):

452-7.

[11]Golzary A, Imanian S, Abdoli M A, et al. A costeffective strategy for marine microalgae separation by

electro-coagulation-flotation process aimed at bio-crude oil

production: Optimization and evaluation study [J]. Sep Purif

Technol, 2015, 147: 156-65.

[12]Vandamme D, Pontes S C V, Goiris K, et al.

Evaluation of Electro-Coagulation-Flocculation for Harvesting

Marine and Freshwater Microalgae [J]. Biotechnology and

Bioengineering, 2011, 108(10): 2320-9.

[13]Baierle F, John D K, Souza M P, et al. Biomass

from microalgae separation by electroflotation with iron and

aluminum spiral electrodes [J]. Chem Eng J, 2015, 267: 274-

81.

[14]Fayad N, Yehya T, Audonnet F, et al. Harvesting

of microalgae Chlorella vulgaris using electro-coagulationflocculation in the batch mode [J]. Algal Res, 2017, 25: 1-11.

[15]Danquah M K, Ang L, Uduman N, et al. Dewatering

of microalgal culture for biodiesel production: exploring polymer

flocculation and tangential flow filtration [J]. Journal of Chemical

Technology and Biotechnology, 2009, 84(7): 1078-83.

[16]Xu L, Guo C, Wang F, et al. A simple and rapid

harvesting method for microalgae by in situ magnetic

separation [J]. Bioresource Technol, 2011, 102(21): 10047-51.

[17]Cerff M, Morweiser M, Dillschneider R, et al.

Harvesting fresh water and marine algae by magnetic

separation: Screening of separation parameters and high

gradient magnetic filtration [J]. Bioresource Technol, 2012,

118: 289-95.

[18]Liu P, Wang T, Yang Z, et al. Effects of Fe3O4

nanoparticle fabrication and surface modification on Chlorella

sp. harvesting efficiency [J]. Sci Total Environ, 2020, 704.

[19]Duman F, Sahin U, Atabani A E. Harvesting of

blooming microalgae using green synthetized magnetic

maghemite (gamma-Fe2O3) nanoparticles for biofuel production

[J]. Fuel, 2019, 256.

[20]Wang S-K, Stiles A R, Guo C, et al. Harvesting

microalgae by magnetic separation: A review [J]. Algal Res,

2015, 9: 178-85.

[21]Ge S, Agbakpe M, Zhang W, et al. Heteroaggregation

between PEI-Coated Magnetic Nanoparticles and Algae: Effect

of Particle Size on Algal Harvesting Efficiency [J]. Acs Applied

Materials & Interfaces, 2015, 7(11): 6102-8.

[22]Lee K, Lee S Y, Na J-G, et al. Magnetophoretic

harvesting of oleaginous Chlorella sp by using biocompatible

chitosan/magnetic nanoparticle composites [J]. Bioresource

Technol, 2013, 149: 575-8.

[23]Lee K, Lee S Y, Praveenkumar R, et al. Repeated use

of stable magnetic flocculant for efficient harvest of oleaginous

Chlorella sp [J]. Bioresource Technol, 2014, 167: 284-90.

[24]Baresova M, Naceradska J, Novotna K, et al. The

impact of preozonation on the coagulation of cellular organic

matter produced by Microcystis aeruginosa and its toxin

degradation [J]. J Environ Sci-China, 2020, 98: 124-33.

[25]Chen Y Q, Xie P C, Wang Z P, et al. UV/persulfate

preoxidation to improve coagulation efficiency of Microcystis

aeruginosa [J]. J Hazard Mater, 2017, 322: 508-15.

[26]Shahi N K, Maeng M, Choi I, et al. Degradation effect

of ultraviolet-induced advanced oxidation of chlorine, chlorine

dioxide, and hydrogen peroxide and its impact on coagulation

of extracellular organic matter produced by Microcystis

aeruginosa [J]. Chemosphere, 2021, 281.

[27]Dong F L, Lin Q F, Li C, et al. Impacts of preoxidation on the formation of disinfection byproducts from algal

organic matter in subsequent chlor(am)ination: A review [J].

Sci Total Environ, 2021, 754.




DOI: http://dx.doi.org/10.12361/2661-3743-04-04-80375

Refbacks

  • 当前没有refback。