微藻混凝技术研究进展
摘要
华爆发会导致水域生态环境破坏,近年来的研究报告显示目前世界范围内藻华爆发态势仍不容乐观。藻细胞混凝技
术是目前除藻技术的重要环节,并能为具有发展生物质资源的微藻解决关键的采收成本问题。本文梳理了混凝技术
的研究进展,对比了不同混凝技术的特点,提出了目前存在的问题和未来的研究方向。
关键词
全文:
PDF参考
[1]Reid A J, Carlson A K, Creed I F, et al. Emerging
threats and persistent conservation challenges for freshwater
biodiversity [J]. Biol Rev, 2019, 94(3): 849-73.
[2]Carpenter S R, Caraco N F, Correll D L, et al. Nonpoint
pollution of surface waters with phosphorus and nitrogen [J].
Ecol Appl, 1998, 8(3): 559-68.
[3]Qin B, Gao G, Zhu G, et al. Lake eutrophication and its
ecosystem response [J]. Chinese Science Bulletin, 2013, 58(9):
961-70.
[4]Knuckey R M, Brown M R, Robert R, et al. Production
of microalgal concentrates by flocculation and their assessment
as aquaculture feeds [J]. Aquacultural Engineering, 2006,
35(3): 300-13.
[5]Wu Z, Zhu Y, Huang W, et al. Evaluation of
flocculation induced by pH increase for harvesting microalgae
and reuse of flocculated medium [J]. Bioresource Technol,
2012, 110: 496-502.
[6]Mollah M Y A, Morkovsky P, Gomes J A G, et
al. Fundamentals, present and future perspectives of
electrocoagulation [J]. J Hazard Mater, 2004, 114(1-3): 199-
210.
[7]Chen X M, Chen G H, Yue P L. Separation of
pollutants from restaurant wastewater by electrocoagulation [J].
Sep Purif Technol, 2000, 19(1-2): 65-76.
[8]Essadki A H, Bennajah M, Gourich B, et al.
Electrocoagulation/electroflotation in an external-loop airlift
reactor - Application to the decolorization of textile dye
wastewater: A case study [J]. Chemical Engineering and
Processing-Process Intensification, 2008, 47(8): 1211-23.
[9]Ge J T, Qu J H, Lei P J, et al. New bipolar
electrocoagulation-electroflotation process for the treatment of
laundry wastewater [J]. Sep Purif Technol, 2004, 36(1): 33-9.
[ 1 0 ] Z u o Q , C h e n X , L i W , e t a l . C o m b i n e d
electrocoagulation and electroflotation for removal of fluoride
from drinking water [J]. J Hazard Mater, 2008, 159(2-3):
452-7.
[11]Golzary A, Imanian S, Abdoli M A, et al. A costeffective strategy for marine microalgae separation by
electro-coagulation-flotation process aimed at bio-crude oil
production: Optimization and evaluation study [J]. Sep Purif
Technol, 2015, 147: 156-65.
[12]Vandamme D, Pontes S C V, Goiris K, et al.
Evaluation of Electro-Coagulation-Flocculation for Harvesting
Marine and Freshwater Microalgae [J]. Biotechnology and
Bioengineering, 2011, 108(10): 2320-9.
[13]Baierle F, John D K, Souza M P, et al. Biomass
from microalgae separation by electroflotation with iron and
aluminum spiral electrodes [J]. Chem Eng J, 2015, 267: 274-
81.
[14]Fayad N, Yehya T, Audonnet F, et al. Harvesting
of microalgae Chlorella vulgaris using electro-coagulationflocculation in the batch mode [J]. Algal Res, 2017, 25: 1-11.
[15]Danquah M K, Ang L, Uduman N, et al. Dewatering
of microalgal culture for biodiesel production: exploring polymer
flocculation and tangential flow filtration [J]. Journal of Chemical
Technology and Biotechnology, 2009, 84(7): 1078-83.
[16]Xu L, Guo C, Wang F, et al. A simple and rapid
harvesting method for microalgae by in situ magnetic
separation [J]. Bioresource Technol, 2011, 102(21): 10047-51.
[17]Cerff M, Morweiser M, Dillschneider R, et al.
Harvesting fresh water and marine algae by magnetic
separation: Screening of separation parameters and high
gradient magnetic filtration [J]. Bioresource Technol, 2012,
118: 289-95.
[18]Liu P, Wang T, Yang Z, et al. Effects of Fe3O4
nanoparticle fabrication and surface modification on Chlorella
sp. harvesting efficiency [J]. Sci Total Environ, 2020, 704.
[19]Duman F, Sahin U, Atabani A E. Harvesting of
blooming microalgae using green synthetized magnetic
maghemite (gamma-Fe2O3) nanoparticles for biofuel production
[J]. Fuel, 2019, 256.
[20]Wang S-K, Stiles A R, Guo C, et al. Harvesting
microalgae by magnetic separation: A review [J]. Algal Res,
2015, 9: 178-85.
[21]Ge S, Agbakpe M, Zhang W, et al. Heteroaggregation
between PEI-Coated Magnetic Nanoparticles and Algae: Effect
of Particle Size on Algal Harvesting Efficiency [J]. Acs Applied
Materials & Interfaces, 2015, 7(11): 6102-8.
[22]Lee K, Lee S Y, Na J-G, et al. Magnetophoretic
harvesting of oleaginous Chlorella sp by using biocompatible
chitosan/magnetic nanoparticle composites [J]. Bioresource
Technol, 2013, 149: 575-8.
[23]Lee K, Lee S Y, Praveenkumar R, et al. Repeated use
of stable magnetic flocculant for efficient harvest of oleaginous
Chlorella sp [J]. Bioresource Technol, 2014, 167: 284-90.
[24]Baresova M, Naceradska J, Novotna K, et al. The
impact of preozonation on the coagulation of cellular organic
matter produced by Microcystis aeruginosa and its toxin
degradation [J]. J Environ Sci-China, 2020, 98: 124-33.
[25]Chen Y Q, Xie P C, Wang Z P, et al. UV/persulfate
preoxidation to improve coagulation efficiency of Microcystis
aeruginosa [J]. J Hazard Mater, 2017, 322: 508-15.
[26]Shahi N K, Maeng M, Choi I, et al. Degradation effect
of ultraviolet-induced advanced oxidation of chlorine, chlorine
dioxide, and hydrogen peroxide and its impact on coagulation
of extracellular organic matter produced by Microcystis
aeruginosa [J]. Chemosphere, 2021, 281.
[27]Dong F L, Lin Q F, Li C, et al. Impacts of preoxidation on the formation of disinfection byproducts from algal
organic matter in subsequent chlor(am)ination: A review [J].
Sci Total Environ, 2021, 754.
DOI: http://dx.doi.org/10.12361/2661-3743-04-04-80375
Refbacks
- 当前没有refback。