污水处理厂尾水深度净化人工湿地性能提升研究进展
摘要
要污染源之一,对污水厂尾水进行深度净化可有效解决尾水污染问题,缓解水资源紧张的局面。人工湿地技术是城
市污水厂尾水深度净化水质提升的优选措施。为有效提高人工湿地对城市污水厂尾水的净化效率,促进人工湿地性
能的提升,基于人工湿地组合优化、保温措施优化、改进曝气工艺、干湿交替、填料基质改性及工艺耦合等六个层
面对近年来尾水深度净化人工湿地性能提升的相关研究进展进行总结,并为今后尾水净化人工湿地工艺优化的研究
方向提供相关见解。
关键词
全文:
PDF参考
[1]SHAN A, WANG W, KANG K J, et al. The Removal
of Antibiotics in Relation to a Microbial Community
in an Integrated Constructed Wetland for Tail Water
Decontamination [J]. Wetlands, 2020, 40(5): 993-1004.
[2]LIANG K, DAI Y, WANG F, et al. Seasonal variation
of microbial community for the treatment of tail water in
constructed wetland [J]. Water Science and Technology, 2017,
75(10): 2434-2442.
[3]ZHANG H, TANG W, WANG W, et al. A review
on China's constructed wetlands in recent three decades:
Application and practice [J]. Journal of Environmental
Sciences, 2021, 104:53-68.
[4]XIONG C, LI Q, TAM N F, et al. The combination
sequence effect on nitrogen removal pathway in hybrid
constructed wetlands treating raw sewage from multiple
perspectives [J]. Science of The Total Environment, 2022,
833:155200.
[5] 张高军,王永军,魏玉朝,等 . 改良人工湿地强
化污水处理厂尾水脱氮性能研究 [J]. 中国资源综合利用,
2022,40(02):194-198.
[6] 王翔,朱召军,尹敏敏,等 . 组合人工湿地用于
城市污水处理厂尾水深度处理 [J]. 中国给水排水,2020,
36(06):97-101.
[7] 管映兵,张向阳,杨帆 . 复合型人工湿地用于某
污水厂尾水深度处理模式探讨 [J]. 环境生态学,2021,3
(09):74-78.
[8]JI M, HU Z, HOU C, et al. New insights for enhancing
the performance of constructed wetlands at low temperatures [J].
Bioresource Technology, 2020, 301:122722.
[9]ZHANG L, MU L, XIONG Y, et al. The development
of a natural heating technology for constructed wetlands in cold
climates [J]. Ecological Engineering, 2015, 75:51-60.
[10]LIANG M-Y, HAN Y-C, EASA S M, et al. New
solution to build constructed wetland in cold climatic region [J].
Science of The Total Environment, 2020, 719:137124.
[11] 潘成荣,陈建,彭书传,等 . 复合型人工湿地
对 污 水 厂 尾 水 的 深 度 处 理 效 果 [J/OL]. 中 国 给 水 排 水:
1-15[2022-05-02].http://kns.cnki.net/kcms/detail/12.1073.
TU.20210330.1114.002.html
[12]DONG C, LI M, ZHUANG L-L, et al. The
Improvement of Pollutant Removal in the Ferric-Carbon
Micro-Electrolysis Constructed Wetland by Partial Aeration [J].
Water, 2020, 12(2): 389.
[13]LIU G, HE T, LIU Y, et al. Study on the purification
effect of aeration-enhanced horizontal subsurface-flow
constructed wetland on polluted urban river water [J].
Environmental Science and Pollution Research, 2019, 26(13):
12867-12880.
[14]CHEN X Y, ZHU J, CHEN J. Effect of dry-wet
alternation on dissolved oxygen concentration in constructed
wetland [J]. Applied Ecology and Environmental Research,
2021, 19:95-105.
[15]ZHU J, CHEN X, LU J, et al. Effect of dry-wet
alternation on denitrogen bacteria in constructed wetland[DB/
OL].[2022-04-13].https://assets.researchsquare.com/files/
rs-1520694/v1/7f6d973e-ee3f-4d8b-bc8c-0ac181dc312a.
pdf?c=1649866490
[16]ZHOU X, LIANG C, JIA L, et al. An innovative
biochar-amended substrate vertical flow constructed wetland
for low C/N wastewater treatment: Impact of influent strengths
[J]. Bioresource Technology, 2018, 247:844-850.
[17]SUN Y, ZHOU P, ZHANG N, et al. Effects of matrix
modification and bacteria amendment on the treatment
efficiency of municipal tailwater pollutants by modified
vertical flow constructed wetland [J]. Journal of Environmental
Management, 2021, 281:111920.
[18]JIA W, YANG L. Community Composition and Spatial
Distribution of N-Removing Microorganisms Optimized by FeModified Biochar in a Constructed Wetland [J]. International
Journal of Environmental Research and Public Health, 2021,
18(6): 2938.
[19]JIA W, SUN X, GAO Y, et al. Fe-modified biochar
enhances microbial nitrogen removal capability of constructed
wetland [J]. Science of The Total Environment, 2020,
740:139534.
[20]RUSSO N, MARZO A, RANDAZZO C, et al.
Constructed wetlands combined with disinfection systems for
removal of urban wastewater contaminants [J]. Science of The
Total Environment, 2019, 656:558-566.
[21]XING L, KONG M, XIE X, et al. Feasibility and
safety of papermaking wastewater in using as ecological water
supplement after advanced treatment by fluidized-bed Fenton
coupled with large-scale constructed wetland [J]. Science of
The Total Environment, 2020, 699:134369.
[22]GAO Y, YAN C, WEI R, et al. Photovoltaic
electrolysis improves nitrogen and phosphorus removals
of biochar-amended constructed wetlands [J]. Ecological
Engineering, 2019, 138:71-78.
[23]KATAKI S, CHATTERJEE S, VAIRALE M G, et
al. Constructed wetland, an eco-technology for wastewater
treatment: A review on various aspects of microbial fuel cell
integration, low temperature strategies and life cycle impact
of the technology [J]. Renewable and Sustainable Energy
Reviews, 2021, 148:111261.
[24]SRIVASTAVA P, YADAV A K, GARANIYA V, et
al. Chapter 6.3 - Constructed Wetland Coupled Microbial
Fuel Cell Technology: Development and Potential Applications
[M]//MOHAN S V, VARJANI S, PANDEY A. Microbial
Electrochemical Technology. Elsevier. 2019: 1021-1036.
[25]XU F, CAO F-Q, KONG Q, et al. Electricity
production and evolution of microbial community in the
constructed wetland-microbial fuel cell [J]. Chemical
Engineering Journal, 2018, 339:479-486.
[26]OON Y-L, ONG S-A, HO L-N, et al. Hybrid system
up-flow constructed wetland integrated with microbial fuel
cell for simultaneous wastewater treatment and electricity
generation [J]. Bioresource Technology, 2015, 186:270-275.
[27]RAMíREZ-VARGAS C A, PRADO A, ARIAS C A,
et al. Microbial Electrochemical Technologies for Wastewater
Treatment: Principles and Evolution from Microbial Fuel Cells
to Bioelectrochemical-Based Constructed Wetlands [J]. Water,
2018, 10(9): 1128.
DOI: http://dx.doi.org/10.12361/2661-3743-04-05-86624
Refbacks
- 当前没有refback。