首页出版说明中文期刊中文图书环宇英文官网付款页面

污水处理厂尾水深度净化人工湿地性能提升研究进展

陆 盛森
620123199412212111

摘要


水资源匮乏及水污染问题成为制约我国经济社会高质量发展的重要瓶颈。城市污水厂尾水是自然水域的重
要污染源之一,对污水厂尾水进行深度净化可有效解决尾水污染问题,缓解水资源紧张的局面。人工湿地技术是城
市污水厂尾水深度净化水质提升的优选措施。为有效提高人工湿地对城市污水厂尾水的净化效率,促进人工湿地性
能的提升,基于人工湿地组合优化、保温措施优化、改进曝气工艺、干湿交替、填料基质改性及工艺耦合等六个层
面对近年来尾水深度净化人工湿地性能提升的相关研究进展进行总结,并为今后尾水净化人工湿地工艺优化的研究
方向提供相关见解。

关键词


尾水;人工湿地;性能提升;工艺耦合

全文:

PDF


参考


[1]SHAN A, WANG W, KANG K J, et al. The Removal

of Antibiotics in Relation to a Microbial Community

in an Integrated Constructed Wetland for Tail Water

Decontamination [J]. Wetlands, 2020, 40(5): 993-1004.

[2]LIANG K, DAI Y, WANG F, et al. Seasonal variation

of microbial community for the treatment of tail water in

constructed wetland [J]. Water Science and Technology, 2017,

75(10): 2434-2442.

[3]ZHANG H, TANG W, WANG W, et al. A review

on China's constructed wetlands in recent three decades:

Application and practice [J]. Journal of Environmental

Sciences, 2021, 104:53-68.

[4]XIONG C, LI Q, TAM N F, et al. The combination

sequence effect on nitrogen removal pathway in hybrid

constructed wetlands treating raw sewage from multiple

perspectives [J]. Science of The Total Environment, 2022,

833:155200.

[5] 张高军,王永军,魏玉朝,等 . 改良人工湿地强

化污水处理厂尾水脱氮性能研究 [J]. 中国资源综合利用,

2022,40(02):194-198.

[6] 王翔,朱召军,尹敏敏,等 . 组合人工湿地用于

城市污水处理厂尾水深度处理 [J]. 中国给水排水,2020,

36(06):97-101.

[7] 管映兵,张向阳,杨帆 . 复合型人工湿地用于某

污水厂尾水深度处理模式探讨 [J]. 环境生态学,2021,3

(09):74-78.

[8]JI M, HU Z, HOU C, et al. New insights for enhancing

the performance of constructed wetlands at low temperatures [J].

Bioresource Technology, 2020, 301:122722.

[9]ZHANG L, MU L, XIONG Y, et al. The development

of a natural heating technology for constructed wetlands in cold

climates [J]. Ecological Engineering, 2015, 75:51-60.

[10]LIANG M-Y, HAN Y-C, EASA S M, et al. New

solution to build constructed wetland in cold climatic region [J].

Science of The Total Environment, 2020, 719:137124.

[11] 潘成荣,陈建,彭书传,等 . 复合型人工湿地

对 污 水 厂 尾 水 的 深 度 处 理 效 果 [J/OL]. 中 国 给 水 排 水:

1-15[2022-05-02].http://kns.cnki.net/kcms/detail/12.1073.

TU.20210330.1114.002.html

[12]DONG C, LI M, ZHUANG L-L, et al. The

Improvement of Pollutant Removal in the Ferric-Carbon

Micro-Electrolysis Constructed Wetland by Partial Aeration [J].

Water, 2020, 12(2): 389.

[13]LIU G, HE T, LIU Y, et al. Study on the purification

effect of aeration-enhanced horizontal subsurface-flow

constructed wetland on polluted urban river water [J].

Environmental Science and Pollution Research, 2019, 26(13):

12867-12880.

[14]CHEN X Y, ZHU J, CHEN J. Effect of dry-wet

alternation on dissolved oxygen concentration in constructed

wetland [J]. Applied Ecology and Environmental Research,

2021, 19:95-105.

[15]ZHU J, CHEN X, LU J, et al. Effect of dry-wet

alternation on denitrogen bacteria in constructed wetland[DB/

OL].[2022-04-13].https://assets.researchsquare.com/files/

rs-1520694/v1/7f6d973e-ee3f-4d8b-bc8c-0ac181dc312a.

pdf?c=1649866490

[16]ZHOU X, LIANG C, JIA L, et al. An innovative

biochar-amended substrate vertical flow constructed wetland

for low C/N wastewater treatment: Impact of influent strengths

[J]. Bioresource Technology, 2018, 247:844-850.

[17]SUN Y, ZHOU P, ZHANG N, et al. Effects of matrix

modification and bacteria amendment on the treatment

efficiency of municipal tailwater pollutants by modified

vertical flow constructed wetland [J]. Journal of Environmental

Management, 2021, 281:111920.

[18]JIA W, YANG L. Community Composition and Spatial

Distribution of N-Removing Microorganisms Optimized by FeModified Biochar in a Constructed Wetland [J]. International

Journal of Environmental Research and Public Health, 2021,

18(6): 2938.

[19]JIA W, SUN X, GAO Y, et al. Fe-modified biochar

enhances microbial nitrogen removal capability of constructed

wetland [J]. Science of The Total Environment, 2020,

740:139534.

[20]RUSSO N, MARZO A, RANDAZZO C, et al.

Constructed wetlands combined with disinfection systems for

removal of urban wastewater contaminants [J]. Science of The

Total Environment, 2019, 656:558-566.

[21]XING L, KONG M, XIE X, et al. Feasibility and

safety of papermaking wastewater in using as ecological water

supplement after advanced treatment by fluidized-bed Fenton

coupled with large-scale constructed wetland [J]. Science of

The Total Environment, 2020, 699:134369.

[22]GAO Y, YAN C, WEI R, et al. Photovoltaic

electrolysis improves nitrogen and phosphorus removals

of biochar-amended constructed wetlands [J]. Ecological

Engineering, 2019, 138:71-78.

[23]KATAKI S, CHATTERJEE S, VAIRALE M G, et

al. Constructed wetland, an eco-technology for wastewater

treatment: A review on various aspects of microbial fuel cell

integration, low temperature strategies and life cycle impact

of the technology [J]. Renewable and Sustainable Energy

Reviews, 2021, 148:111261.

[24]SRIVASTAVA P, YADAV A K, GARANIYA V, et

al. Chapter 6.3 - Constructed Wetland Coupled Microbial

Fuel Cell Technology: Development and Potential Applications

[M]//MOHAN S V, VARJANI S, PANDEY A. Microbial

Electrochemical Technology. Elsevier. 2019: 1021-1036.

[25]XU F, CAO F-Q, KONG Q, et al. Electricity

production and evolution of microbial community in the

constructed wetland-microbial fuel cell [J]. Chemical

Engineering Journal, 2018, 339:479-486.

[26]OON Y-L, ONG S-A, HO L-N, et al. Hybrid system

up-flow constructed wetland integrated with microbial fuel

cell for simultaneous wastewater treatment and electricity

generation [J]. Bioresource Technology, 2015, 186:270-275.

[27]RAMíREZ-VARGAS C A, PRADO A, ARIAS C A,

et al. Microbial Electrochemical Technologies for Wastewater

Treatment: Principles and Evolution from Microbial Fuel Cells

to Bioelectrochemical-Based Constructed Wetlands [J]. Water,

2018, 10(9): 1128.




DOI: http://dx.doi.org/10.12361/2661-3743-04-05-86624

Refbacks

  • 当前没有refback。