网络安全与网络取证:机器学习方法
摘要
了平台。数字取证是一个计算机安全领域,它使用软件应用程序和标准指南,支持从任何计算机设备中提取证据,
这些设备完全足以让法庭根据所获得信息的全面性、真实性和客观性进行使用和判断。由于物联网中每天都在发生
的攻击、威胁、病毒、入侵等最新形式,网络安全是全世界互联网用户最关心的问题。这项工作的目的是对机器学
习算法在网络安全和网络取证中的应用进行系统回顾,根据这一发现,对机器学习方法在网络取证和网络安全中的
最新应用进行了系统调查,还指出,网络安全有十个步骤;网络安全、用户教育和意识、恶意软件预防、可移动媒
体控制、安全配置、管理用户权限、事件管理、监控以及家庭和移动工作,为深入学习、计算智能、软计算在网络
安全和网络取证中的应用的进一步研究方向铺平道路。
关键词
全文:
PDF参考
[1] Shahzad S. (2015) protecting the integrity of digital
evidence and basic human rights during the process of digital
forensics. Ph. D. thesis Stockholm University.
[2] Abdalzim A. M. A. & Amin B. A. M. (2015) a survey
on mobile forensics for
android smart phones IOSR Journal of computer
engineering 17 (2) 15-19
[3] Nickson M. K., Victor R. K. & Venter H. (2019)
Divergency deep learning cognitive computing techniques
into cyber forensics Elservier Forensics Science international
synergy 1 (2019) 61-67.
[4] Rukayat A. A., Charles O. U. & Florence A. O. (2017)
computer forensics guidelines: a requirement for testing cyber
crime in Nigeria now?
[5] Casey E. (2016) Editorial- A sea change in digital
forensics and incident response. Digital investigation evidence
Elservier Ltd 17, A1-A2.
[6] Ehsan S. & Giti J. (2019) Seminars in proactive
artificial intelligence for cyber security consulting and
research, Systematic cybernetics and informatics 17 (1) 297-
305
[7] Bandir A. (2019) Forensics analysis using text
clustering in the age of large volume data: a review.
International journal of advanced computer and application.
10 (6), 72-76.
[8] Al-Jadir I., Wong K. W., Fing C. C. & Xie H. (2018)
Enhensing digital forensics analysis using memetic algorithm
feature selection method for document clustering 2018 IEEE
international conference on systems, Man and cybernetics
3673-3678.
[9] Sunil B. & Preeti B. (2018) Application of artificial
intelligence in cyber security. International journal of
engineering research in computer science and engineering 5
(4), 214-219.
[10] David O. A., Goodness O. & Etecte M. A. (2019)
Unbated cyber terrorism and huma security in Nigeria. Asian
social science 15 (11), 105-115.
[11] April (2014) threat start-SMS spam volume by
month of each region SC magazine. available online at http//
www.scmagazine.com/april-2014-threat-stats/slideshowz.
[12] Apruzze G., Colajanni M. F., Ferreti L., & Marchett
M. (2018) on the effectiveness of machine learning for cyber
security in 2018 IEEE international conference on cyber
conflict 371-390.
[13] Buckza A. L. & Guven E. (2016) A survey of data
mining and machine learning
methods for cyber security intrusion detection IEEE
communication survey and totorials 18 (2), 1153-1176.
[14] Biswas S. K. (2018) intrusion detection using
machine learning: A comparison study. International Journal
of pure and applied mathematics 118 (19), 101-114.
[15] Y. Xin, Kong L., Liu Z., Chen Y., Zhu H., Gao M.,
Hou H., & Wang C. Machine learning and deep learning
methods for cyber security. IEEE Access 6: 35365-35381
(2018).
[16] N. Miloseivic, Denghantanh A., Choo K. K. R.
Machine learning aided android malware classification.
Computer and electrical engineering 61: 266-274 (2017).
[17] B. Geluvaraj, Stawik P. M., Kumar T. A. the
future of cyber security: the major role of Artificial
intelligence, Machine learning and deep learning in cyber
space. International conference on computer network and
communication technologies Springer Singapore. 739-747
(2019).
[18] H. Mohammed B., Vinaykumar R., Soman K. P. A
short review on applications of deep learning for cyber security
(2018).
[19] M. Rege, Mbah R. B. K. Machine learning for cyber
defense and attack. in the 7th International conference on data
analysis 73-78 (2018).
[20] D. Ding, Hang Q. L., Xing Y., Ge X., and Zhang X. M.
A survey on security control and attack detection for industrial
cyber physical system. Neuro-computing. 275. 1674-1683
(2018).
[21] D. Berman S., Buczak A. L., Chavis J. S., Corbelt
C. L. A survey of deep learning methods for cyber security
information 10 (4): (2018).
[22] Y. Wang, Ye Z., Wan P., Zhao J. A survey of
dynamicspectrum allocation based on reinforcement
learningalgorithms in cognitive radio network. Artificial
intelligence review. 51 (3): 413-506 (2019).
[23] A. Abubakar, Paranggono B. Machine learning based
intrusion detection system for software defined networks.
7thInternational conference on Emerging security techniques
IEEE. 138-143. (2017).
[24] S. Jose, Malathi D., Reddy B., Jayaseeli D. A survey
on anomaly based host intrusion detection system. Journal of
physics. Conference series 1000 (1): (2018).
[25] S. Dey, Ye Q., Sampalli S. A Machine learning
basedintrusion detection scheme for data fusion in mobile
cloud involving heterogeneous clients network. Information
fussion 49: 205-215 (2019).
[26] P. Deshpande, Sharma S. C., Peddoju S. K., Junaid
S. HIDS: a host based intrusion detection system for cloud
computing environment. International journal of system
assuarance engineering and management. 9 (3): 567-576
(2018).
[27] M. Nobakht, Sivaraman V., Boreli R. A hostBased Intrusion detection and mitigation framework for smart
IoT using open flow in 11th International conference on
availability reliability and security IEEE. 147-156 (2016).
[28] A. Meshram, Christian H. Anomaly detection in
industrial networks using machine learning: A road map.
Machine learning for cyber physical system Springer Berlin
Heldelberg. 65-72 (2017).
[29] R. Devakunchari, Souraba, Prakhar M. A study
of cyber security using machine learning techniques.
International journal of innovative technology and exploring
engineering. 8 (7): 183-186 (2019).
[30] E. Alison N. FLUF: fuzzy logic utility framework
to support computer network defense decision making IEEE
(2016).
[31] A. Taylor, Leblanc S., Japkowicz N. Anomaly
detection in auto-mobile control network data with long short
term memory network in data science and advance analytics.
IEEE international conference. 130-139 (2016).
[32] O. Amosov S., Ivan Y. S., Amosovo S. G. Recognition
of abnormal traffic using deep neural networks and fuzzy logic.
International Multi-conference on industrial engineering and
modern technologies IEEE (2019).
[33] M. Gyun L. Artificial Intelligence for development
series: Report on AI and IoT in Security Aspect. (2018).
[34] L. Matt. Rise of machine: machine learning & its
cybersecurity applications, NCC group white paper (2017).
[35] National cyber security center UK, www.ncsc.gov.
uk.
[36] A. Nuril, Supriyanto (2019) Forensic Authentication
of WhatsApp Messenger Using the Information Retrieval
Approach. International Journal of Cyber Security and Digital
Forensics (IJCSDF) 8 (3): 206-212 (2019).
[37] A Marfianto, I Riadi. WhatsApp Messenger Forensic
Analysis Based on Android Using Text Mining Method.
International Journal of Cyber Security and Digital Forensics
(IJCSDF) 7 (3): 319-327 (2018).
[38] N Anwar, I. Riadi. Forensic Investigative Analysis
of WhatsApp Messenger Smartphone Against WhatsApp
WebBased, Journal Information Technology Electromagnetic
Computing and Information, 3 (1): 1-10 (2017).
[39] S. Ikhsani and C. Hidayanto, Whatsapp and LINE
Messenger Forensic Analysis with Strong and Valid Evidence
in Indonesia. Tek. ITS, 5 (2): 728-736 (2016).
[40] M. Ashawa, S. Morris. Analysis of Android Malware
Detection Techniques: A Systematic Review. International
Journal of Cyber Security and Digital Forensics (IJCSDF) 8 (3):
177-187 (2019).
[41] W. Songyang, Wang, P., Zhang, Y. Effective
detection of android malware based
on the usage of data flow APIs and machine learning:
Information and Software Technology, 75: 17--25 (2016).
[42] Anastasia, S., Gamayunov, D.: Review of the mobile
malware detection approaches: Parallel, Distributed and
NetworkBased Processing (PDP). In: Proc. 2015. IEEE 23rd
Euro micro International Conference, pp. 600—603 (2015).
[43] D. Anusha, Troia, F. D., Visaggio, C. A., Austin, T.
H., Stamp, M.: A comparison of static, dynamic, and hybrid
analysis for malware detection. Journal of Computer Virology
and Hacking Techniques, 13 (1) 1-12 (2017).
[44] S. Morgan, (2017). Cyber security Business
Report. Retrieved from CSO: https://www.csoonline.com/
article/3237674/ransomware/ransomware-damage-costspredicted-to-hit-115b-b y-2019.html.
[45] R. Collier, (2017). NHS ransomware attack spreads
worldwide. CMAJ, 189 (22), 786-787. https://doi.org/10.1503/
cmaj.1095434.
[46] H. Trisnasenjaya, I. Riadi Forensic Analysis of
Android-based Whats App Messenger Against Fraud Crime
Using The National Institute of Standard and Technology
Framework. International Journal of Cyber Security and
Digital Forensics (IJCSDF) 8 (1): 89-97 (2019).
[47] H. Parag Rughani. Artificial Intelligence Based
Digital Forensics Framework. International Journal of
Advanced Research in Computer Science. 8 (8): 10-14 (2017).
[48] 2016: Current State of Cybercrime, RSA Whitepaper,
2016.
[49] World Internet Users and 2017 Population Stats,
accessed from http://http://www.internetworldstats.com/stats.
htm.
[50] R. Mark. Computer forensics: Basics. Lecture note
Purdue University (2004).
[51] Ibrahim Goni & Ahmed L. (2015) Propose NeuroFuzzyGenetic Intrusion Detection System International
Journal of Computer Applications Vol. 115 No. 8 available
online at http://www.ijcaonline.com/archives/volume115/
number8/20169-2320.
DOI: http://dx.doi.org/10.12361/2661-3727-04-06-113777
Refbacks
- 当前没有refback。