基于对抗训练的加密恶意流量检测技术研究
摘要
训练基于深度学习技术的原始检测模型,随后根据真实样本生成对抗样本,并使用对抗样本继续训练模型。实验表
明本文所提方法能够有效减少数据集对深度学习模型的影响,增强检测模型对加密恶意流量的检测能力。
关键词
全文:
PDF参考
[1] Threats in encrypted traffic [EB/OL]. https://blogs.
cisco.com/security/threats-in-encrypted-traffic.
[2] S. Lee, J. Park, S. Yoon and M. Kim. High
performance payload signature-based Internet traffic
classification system[C]. 2015 17th Asia-Pacific Network
Operations and Management Symposium (APNOMS), 2015:
491-494.
[3] S. Rezaei and X. Liu. Deep Learning for
Encrypted Traffic Classification: An Overview[J]. in IEEE
Communications Magazine, 2019, 57(5): 76-81.
[4] R. Sommer and V. Paxson. Outside the Closed
World: On Using Machine Learning for Network Intrusion
Detection[C]. 2010 IEEE Symposium on Security and Privacy,
2010: 305-316.
[5] J. A. Abraham and V. R. Bindu. Intrusion Detection
and Prevention in Networks Using Machine Learning and
Deep Learning Approaches: A Review[C]. 2021 International
Conference on Advancements in Electrical, Electronics,
Communication, Computing and Automation (ICAECA),
Coimbatore, India, 2021: 1-4
[6] J. Lansky et al. Deep Learning-Based Intrusion
Detection Systems: A Systematic Review [J]. IEEE Access,
2021, 9:101574-101599.
[7] L. Vu, et al. Time Series Analysis for Encrypted
Traffic Classification: A Deep Learning Approach[C]. 2018
18th International Symposium on Communications and
Information Technologies (ISCIT), 2018: 121-126.
[8] Zhou, Zhi-Hua, and Ji Feng. Deep forest: Towards
an alternative to deep neural networks [EB/OL]. 2017, arXiv
preprint arXiv:1702.08835.
[9] C. Szegedy, V. Vanhoucke, S. Ioffe, et.al. Rethinking
the Inception Architecture for Computer Vision [C]. 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 2016, 2818-2826.
[10] J. Su, D. V. Vargas and K. Sakurai. One Pixel Attack
for Fooling Deep Neural Networks[J]. in IEEE Transactions on
Evolutionary Computation, 2019, 23(5): 828-841.
[11] Maria Jose Erquiaga, MCFP dataset[OL], https://
mcfp.felk.cvut.cz/publicDatasets/
[12] ISCX Vpn-nonVpn dataset[OL], http://www.unb.ca/
cic/datasets/vpn.html
DOI: http://dx.doi.org/10.12361/2661-3727-05-01-138426
Refbacks
- 当前没有refback。