基于深度学习的实体关系抽取方法文献综述
摘要
键作用,其效率与准确性直接影响海量非结构化文本的价值挖掘。深度学习凭借自主特征学习能力成为实体关系抽取主流
技术,递归神经网络(RNN)及其变体(LSTM、Bi-LSTM)通过时序建模解决长距离依赖问题,但存在参数训练复杂或
训练周期长等不足;卷积神经网络(CNN)利用卷积与池化操作高效提取局部语义特征,结合位置特征等改进进一步提升
性能,却在长句建模中存在局限;图神经网络(GNN)通过图结构与节点交互优化全局关系建模,在文档级实体关系抽取
中优势显著,其优化聚焦依存树剪枝、多模态图表示等方向;联合学习通过参数共享或序列标注实现端到端建模,部分方
法针对特定领域优化特征融合,提升抽取鲁棒性;大语言模型(LLM)借助大规模预训练与微调增强语义理解和泛化能力,
在低资源、零样本场景及专业术语处理中表现突出,参数高效微调等技术进一步优化其性能。
关键词
全文:
PDF镜像
|参考
[1]Socher R,Huval B,Manning C D,et al.Semantic
c o m p o s i t i o n a l i t y t h r o u g h r e c u r s i v e m a t r i x - v e c t o r
spaces[C]//Proc of Empirical Methods in Natural Language
Processing.2012:1201-1211.
[2] NINGTHOUJAM D,YADAV S,BHATTACHARYYA P,et
al.Relation extraction between the clinical entities based on the
shortest dependency path based lstm[J].arXiv:1903.09941,2019.
[3]Liu Chunyang,Sun Wenbo,Chao Wenlan,et al.Convolution
neural network for relation extraction[C]//Advanced Data Mining
and Applications.2013:231-242.
[4]ZENG D,LIU K,LAI S,et al.Relation classification via
convolutional deep neural network[C]//Proceedings of the25th
International Conference on Computational Linguistics:Technical
Papers,2014:2335-2344.
[ 5 ] N G U Y E N T H , G R I S H M A N R . R e l a t i o n
extraction:perspective from convolutional neural networks[C]//
Proceedings of the 1st Workshop on Vector Space Modeling for
Natural Language Processing,2015:39-48.
[6] SONG L,ZHANG Y,GILDEA D,et al.Leveraging
dependency forest for neural medical relation extraction[J].
arXiv:1911.04123,2019.
[7] FU T J,LI P H,MA W Y.GraphRel:modeling text as
relational graphs for joint entity and relation extraction[C]//
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics,2019:1409-1418.
[8]Miwa M,Bansal M.End-to-end relation extraction using
LSTMs on sequences and tree structures[C]//Proc of Meeting of the
Association for Computational Linguistics.2016:1105-1116.
[9]Zheng Suncong,Wang Feng,Bao Hongyun,et al.Joint
extraction of entities and relations based on a novel tagging
scheme[C]//Proc of Meeting of the Association for Computational
Linguistics.2017:1227-1236.
[10] 张西硕 , 柳林 , 王海龙 , 等 . 知识图谱中实体关系抽
取方法研究 [J]. 计算机科学与探索 ,2024,18(03):574-596.
[11] WANG J X, ZHANG L L, LEE W S, et al. When
phrases meet probabilities:enabling open relation extraction with
cooperating large language models[C]//Proceedings of the62nd
Annual Meeting of the Association for Computational Linguistics.
Stroudsburg:ACL, 2024:13130-13147.
DOI: http://dx.doi.org/10.12361/2661-3727-07-04-175635
Refbacks
- 当前没有refback。

