基于Darknet-19算法的肺炎X射线图像应用
摘要
关键词
全文:
PDF参考
[1] 潘丽艳 , 梁会营 . 基于深度学习的儿童肺炎病原学类型判别 模型 [J]. 中国数字医学 ,2019,14(3):59 中国卫生和计划生育 统计年鉴 2016 卷 ,2016.
[2] Chen W, Zheng R, Baade P D. Cancer statistics in China, 2015. CA: a cancer journal for clinicians, 2016, 66(2): 115-132.
[3] Torre L.A ,Bray F,Siegel RL,et al.Global cancer statistics,2012. CA Cancer JClin,2015, 65(2):87-108.
[4] 赵鑫 , 强彦 , 葛磊 . 基于双模态深度自编码的孤立性肺结节 诊断方法 [J]. 计算机科学 ,2017,44(8): 312-317.
[5] Lecun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015, 521(7553):436-444.
[6] Dermatologist-level classification of skin cancer with deep neural networks. Esteva A,Kuprel B,Novoa R A,et al. Nature ,2017.
[7] Pulmonary nodule detection in CT images:False positive reduction using multi-view convolutional networks. SETIO A A A,CIOMPI F,LITJENS G. IEEE Transactions on Medical Imaging . 2016.
[8] Early brain development in infants at high risk for autism spec- trum disorder. Hazlett,H.C,Gu,H,Munsell,B.C,Kim,S.H,S- tyner,M,Wolff,J.J. Nature,2017.
[9] Deep Learning in Medical Image Analysis. Shen D,Wu G,Suk H I. Annual Review of Biomedical Engineering ,2017.
[10]刘士远,萧毅.基于深度学习的人工智能对医学影像学的 挑战和机遇 [J]. 中华放射学杂志 ,2017,(12).
[11] Tulin Ozturk,Muhammed Talo,Eylul Azra Yildirim,Ulas Ba- ran Baloglu,Ozal Yildirim,U. Rajendra Acharya. Automat- ed detection of COVID-19 cases using deep neural net- works with X-ray images[J]. Computers in Biology and Medi- cine,2020,121.
DOI: http://dx.doi.org/10.18686/jsjxt.v2i3.30178
Refbacks
- 当前没有refback。